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1 Overview of the Toolbox

1-2

The µ-Analysis and Synthesis Toolbox (µ-Tools) is a collection of functions 
(commands) developed primarily for the analysis and synthesis of control 
systems, with an emphasis on quantifying the effects of uncertainty. µ-Tools 
provides a consistent set of data structures for the unified treatment of systems 
in either a time domain, frequency domain, or state-space manner. µ-Tools also 
gives MATLAB® users access to recent developments in control theory, namely 
H∞ optimal control and m analysis and synthesis techniques. This package 
allows you to use sophisticated matrix perturbation results and optimal control 
techniques to solve control design problems. Control design software, such as 
µ-Tools, provides a link between control theory and control engineering.

Computational algorithms for the structured singular value, µ, are main 
features of the toolbox. µ is a mathematical object developed to analyze the 
effect of uncertainty in linear algebra problems. µ is particularly (though not 
exclusively) useful in analyzing the effect of parameter uncertainty and 
unmodeled dynamics on the stability and performance of multiloop feedback 
systems. µ-Tools is a collection of tools designed to help you analyze the 
sensitivity of closed-loop systems to detailed and complex types of modeling 
errors. µ-Tools is also suitable to design control systems that are insensitive to 
classes of variations that you expect between your model and the actual 
physical process which must be controlled.

The µ framework appropriately generalizes notions such as gain margin, phase 
margin, disturbance attenuation, tracking, and noise rejection into a common 
framework suitable for analysis and design, in both single-loop and multiloop 
feedback systems. Even when working with single-loop feedback systems, some 
multi-input, multi-output (MIMO) systems arise during the analysis. Hence, a 
unified framework to deal with MIMO linear systems is important, with full 
support for both the time and frequency domain. µ-Tools provides the 
capability to build complex interconnections (such as cascade, parallel, and 
feedback connections), compute properties (such as poles and zeros), calculate 
time and frequency responses, manipulate these responses (FFT for the time 
domain signals, Bode analysis for the frequency domain functions), and plot 
results. µ-Tools supports two data types in addition to the standard matrices: 
SYSTEM matrices for state-space realizations and VARYING matrices for 
time and frequency responses.
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The advanced features of µ-Tools are aimed at:

• Analyzing the effect of uncertain models on achievable closed-loop 
performance

• Designing controllers for optimal worst-case performance in the face of the 
plant uncertainty

Hence, it is imperative that you understand the following:

• The characterization of “good” closed-loop performance

• How to represent model uncertainty in this framework

• The technical tools available to answer questions about the robustness of a 
given closed-loop system to certain forms of model uncertainty

• The technical tools available to design controllers which achieve good 
performance in the face of the model uncertainty 

The characterization of performance is discussed in Chapter 3. In Chapter 4, 
we concentrate on modeling uncertainty, and the effect it can have on the 
guaranteed performance level of the closed-loop system. The tools for design 
are discussed in the latter part of Chapter 3 and in Chapter 5. Chapter 6 
presents graphical user interfaces for the workspace, control design and time 
simulation. Chapter 7 contains a number of examples to show how to apply 
µ-Tools to robust control problems.
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Organization of This Manual 
The contents of this manual are not intended to be read in sequence. The 
chapters are grouped by topic, and coverage within sections varies from syntax 
descriptions to theoretical justifications.

After skimming the sections on command use and syntax, we feel that the 
examples are the quickest manner in which you can get a feel for the 
techniques. However, it may be necessary to refer back to the concept sections 
as different topics become relevant.

For basic use of the toolbox (system interconnections, system calculations, 
frequency responses, time responses and plotting), the recommended sections 
are shown below.

For robust stability analysis, additional recommended reading is

Emphasis Topic  Pages 

Use Working with the Toolbox Chapter 2

Examples SISO Gain and Phase Margins

MIMO Loop-at-a-Time Margins 

Chapter 7

 GUI Workspace Tool

LFT Time Simulation Tool 

Chapter 6

Emphasis Topic  Pages 

Concepts Modeling Uncertainty

Robust Stability Analysis 

Chapter 4

Examples SISO Gain and Phase Margins 

MIMO Loop-at-a-Time Margins

MIMO Margins Using µ
Space Shuttle Robustness Analysis

Two Tank System 

Chapter 7

 GUI LFT Time Simulation Tool Chapter 6
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For robust performance analysis, additional recommended reading is

For robust control design, additional recommended reading is

Emphasis Topic Pages

Concepts Performance Objectives

Robust Performance Analysis

Chapter 3

Chapter 4

Examples Unstable SISO Analysis

HIMAT Robust Performance

F-14 Lateral-directional Control

Space Shuttle Robustness Analysis

Two Tank System

Chapter 7

GUI LFT Time Simulation Tool Chapter 6

Emphasis Topic Pages

Concepts H∞ Performance Objectives

H∞ Control Design

H∞ Loop Shaping

µ Upper Bound

Robust Control Design

Chapter 3

Chapter 4

Chapter 5

Examples HIMAT Robust Performance Design

F-14 Lateral-Directional Control Design

Space Shuttle Robustness Analysis

Two Tank System

Chapter 7

GUI D-K Iteration Tool Chapter 6
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Advanced topics are

There are three graphical user interfaces, described in detail in Chapter 6. The 
interfaces are:

• wsgui is a Workspace Manager. It allows you to select, save and clear the 
workspace variables, based on their type (VARYING, SYSTEM, 
CONSTANT) and other more complicated selection rules. This tool is useful 
during all MATLAB sessions, and is described in the “Workspace User 
Interface Tool: wsgui” section of Chapter 6.

• simgui is a time-domain simulation package for uncertain closed-loop 
systems. It is powerful enough to build templates for the complex plotting 
requirements of a large MIMO control design report. This tool is described in 
“LFT Time Simulation User Interface Tool: simgui” section of Chapter 6.

• dkitgui is a control design program to assist you with the DK iteration. It 
aids in understanding the DK iteration process. The flexibility allows you to 
easily modify performance objectives and uncertainty models during the 
iteration. This tool is described in “DK Iteration User Interface Tool: dkitgui” 
section of Chapter 6.

Emphasis Topic Pages

Concepts Control Theory

Discrete-time and Sampled-Data Control

Model Reduction

Structured Singular Value Theory

Chapter 3

Chapter 4
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This chapter gives a basic introduction, with examples, to the µ-Analysis and 
Synthesis Toolbox (µ-Tools) data structure and commands. Introductory 
examples are found in the demo programs msdemo1.m and msdemo2.m. Other 
demonstration files are introduced in subsequent chapters. You can copy these 
files from the mutools/subs source into a local directory and examine the 
effects of modifying some of the commands.
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Command Line Display 
All µ-Tools commands have a built-in use display. Any command called with no 
input arguments, or the incorrect number of input arguments results in a brief 
description of the correct command line use. For example, at the command line

mu 
usage: [bonds,dvec,sens,pvec] = mu(matin,blk,opt)

The Data Structures
µ-Tools represents systems (either in state-space form or as frequency 
dependent input/output data) as single data entries. Data structures This 
allows you to have all of the information about a system in a single MATLAB 
variable. In addition, the µ-Tools functions that return a single variable can be 
nested, allowing you to build complex operations out of a few nested operations. 
Examples of this are found throughout this chapter.

The layout of the data structure is quite simple. Consider a typical MATLAB 
matrix, which is usually made up of real and complex numbers. In addition to 
these, MATLAB also allows for a few special values, such as NaN (not a 
number), Inf (infinity), and -Inf. Since these are allowable values, but are not 
typically found in state-space realizations, frequency responses, or time 
responses, they can be used to differentiate more complicated data types from 
plain, constant matrices. This is the approach taken by µ-Tools.

SYSTEM Matrices
Consider a linear, finite dimensional system, modeled by the state-space 
representation

If the system R has nx states, nu inputs, and ny outputs, then , 
, , and . Systems of this type are 

represented in µ-Tools by a single MATLAB data structure, referred to as a 
SYSTEM matrix.

x· Ax Bu+=

y Cx Du+=

A R
nx nx×

∈
B Rnx nu×∈ C Rny nx×∈ D Rny nu×∈
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Throughout this manual, we use the notation

This is not to be confused with a CONSTANT MATLAB matrix containing the 
state-space data. Rather, this notation usually refers to the causal, linear, 
dynamical system described by the differential equations

However, sometimes the notation stands for the transfer function

D + C(sI – A)-1 B,

and sometimes it pertains to the SYSTEM matrix containing the state-space 
data. In any event, the exact meaning is purposely left vague, and easily 
determined from context.

The command pck creates SYSTEM matrices from separate state-space data. 
The matrices

a = [-.15,.5; -.5, -.15]; 
b = [.2 4; -.4 0]; 
c = [5 5]; 
d = [.1 -.1];

represent the state-space data of a two-state, two-input, single-output system. 
The SYSTEM matrix, sys, is created by

sys = pck(a,b,c,d);

Structural information about the matrix sys can be obtained with the 
command minfo.

minfo(sys)

system: 2 states 1 outputs 2 inputs

A B
C D

x· Ax Bu+=

y Cx Du+=
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The command unpck extracts the a, b, c, and d matrices from a SYSTEM 
matrix. You can also examine the contents of the a, b, c, and d matrices without 
explicitly forming them as new variables. Use the command see for this 
purpose.

see(sys)

A matrix

press any key to move to B matrix

B matrix

press any key to move to C matrix

C matrix

press any key to move to D matrix

D matrix

The commands minfo and see work on any of the µ-Tools data structures. The 
command pss2sys converts CONSTANT matrix data in packed form, 
[A B; C D], into a µ-Tools SYSTEM matrix. The command sys2pss transforms 
a SYSTEM matrix in a packed CONSTANT matrix. Alternatively, you can 
generate a purely random SYSTEM matrix with the command sysrand by 
specifying its number of states, inputs and outputs.

The command spoles finds the eigenvalues of the A matrix of a SYSTEM 
matrix. The transmission zeros are calculated using szeros. In this example, 
sys has no transmission zeros. A formatted display of the system poles is 
produced with the µ-Tools command rifd.

-0.1500 0.5000

-0.5000 -0.1500

-0.2000 4.0000

-0.4000 0

5 5

-0.1000 -0.1000
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spoles(sys) 
ans = 

rifd(spoles(sys))

SYSTEM matrices can easily be interconnected (cascade, parallel, feedback) to 
give new SYSTEM matrices. See “Interconnecting Matrices”  for more 
information.

VARYING Matrices
Matrix-valued functions of a single, independent real variable are common in 
systems theory. VARYING matrices The frequency response of a 
multiple-input, multiple-output (MIMO) system is a good example of such a 
function. The independent variable is frequency, and at each frequency the 
transfer function between the inputs and the outputs is a complex matrix. 
represents these types of matrix functions with a data structure called a 
VARYING matrix.

In general, suppose G is a matrix-valued function of a single real variable 
. One method to store this function on the computer is to evaluate 

the function G at N discrete values of , call them x1,x2,. . .,xN and store all 
of the evaluations. This is the approach taken by µ-Tools.

Consider a simple example.

mat1 = [.1 -.1;.25.5]; 
iv1 = 0; 
mat2 = 2*mat1;
iv2 = 1; 
mat3 = 2*mat2; 
iv3 = 2;

–0.1500 + 0.5000i

–0.1500 – 0.5000i

real imaginary frequency damping

–1.5000e-01 –5.0000e-01 5.2202e–01 2.8735e–01

–1.5000e-01 5.0000e–01 5.2202e–01 2.8735e–01

G:R Cn m×→
x R∈
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The command vpck creates the VARYING matrix data structure from column 
stacked matrix and independent variable data. This is done as follows.

matdata = [mat1; mat2; mat3]; 
ivdata = [iv1; iv2; iv3]; 
vmat = vpck(matdata,ivdata)

minfo displays structural characteristics of the matrix and displays the data.

minfo(vmat)

varying:3 pts 2 rows 2 cols

see(vmat)

2 rows 2 columns

iv = 0

iv = 1

iv = 2

Note that variable name iv stands for independent variable in the above 
display. The command seeiv displays only the independent variable values of 
the VARYING matrix vmat.

seeiv(vmat)

Analogous to vpck the command vunpck unpacks the matrix data and 
independent variable data from a VARYING matrix.

0.1000 –0.1000

0.2500 0.5000

0.2000 –0.2000

0.5000 1.0000

0.4000 –0.4000

1.0000 2.0000
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Several commands allow manipulation of the matrix and independent variable 
data. tackon simply appends one VARYING matrix to another (both must have 
the same number of rows and columns in the matrix data). This destroys any 
sequential properties of the independent variable data; i.e., the data will not be 
in monotonically increasing order. sortiv reorders the matrices within a 
VARYING matrix so that the independent variables are increasing (or 
decreasing).

All of the information about the structure is contained in a single MATLAB 
matrix, hence functions returning single matrices can be nested. Hence, 
sophisticated manipulations can be formed as single line commands. For 
example, to merge two VARYING matrices and reorder the independent 
variable’s values, use the command sortiv(tackon(vmat1,vmat2)).

CONSTANT Matrices
If a MATLAB variable is neither a SYSTEM nor a VARYING matrix it is 
treated by µ-Tools as a CONSTANT matrix. CONSTANT matrices 
CONSTANT matrices can be arguments to functions that normally expect 
VARYING or SYSTEM matrix arguments.

The treatment of CONSTANT matrices is consistent with that of a constant 
gain linear system. In operations normally performed on SYSTEM matrices, 
the CONSTANT matrix is analogous to a linear system with only a D matrix. 
In operations where a VARYING interpretation is required, the CONSTANT 
matrix is assumed to be constant across all values of the independent variable. 
This is consistent with the frequency response (or step response) of a constant 
gain linear system.

Acknowledgments
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Accessing Parts of Matrices
The SYSTEM matrix and VARYING matrix data structures allow a large 
amount of data to be stored in a single MATLAB entity. It is often necessary to 
display or operate on only a part of that data. 

The command sel creates subsystems from VARYING, SYSTEM, or 
CONSTANT matrices. The subsystem rows (or outputs) and columns (or 
inputs) are specified. Conceptually, the options are

lcl subvmat = sel(vmat,rows,columns); 
subconst = sel(const,rows,columns); 
subsyst = sel(syst,outputs,inputs);

For example,

subvmat = sel(vmat,1:2,2); 
minfo(subvmat)

varying:3 pts 2 rows 1 cols

selects rows 1 and 2 and column 2 from each matrix in vmat. You can use the 
MATLAB colon notation in the specification of the rows and columns. To select 
all rows or columns, use the character string ’:’ in single quotes. When sel is 
used on a SYSTEM matrix, only the dimensions of the B, C, and D matrices 
change. All the states remain, which may result in a (non)minimal system. 
Extra states of the system can be removed by performing a balanced realization 
(sysbal) or with the commands strunc and sresid.

For VARYING matrices you can access a portion of the independent variables 
with the command xtract. For example,

vmat2 = xtract(vmat,0.5,1.5);
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selects the matrices in vmat with independent variables between 0.5 and 1.5. 
In this case it is a VARYING matrix with a single data point.

see(vmat2)

2 rows 2 columns

iv = 1

A VARYING matrix can be converted to a CONSTANT matrix via the 
command var2con.

The command xtracti extracts (as a VARYING matrix) the data by 
independent variable index, rather than by independent variable value. As in 
the case of xtract, xtracti returns a VARYING matrix.

0.2000 –0.2000

0.5000 1.0000
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Interconnecting Matrices
µ-Tools provides several functions for connecting matrices together. All of the 
functions described here work with interconnections of SYSTEM and 
CONSTANT matrices or VARYING and CONSTANT matrices. If the matrices 
represented are consistent, the combination is allowed. The interconnection of 
a SYSTEM and a VARYING matrix is not allowed in µ-Tools (actually it is 
allowed — see veval for examples of VARYING SYSTEM matrices).

The commands madd, msub, and mmult perform the appropriate arithmetic 
operations on the matrices. A block diagram representation is shown in the 
following figure.

Note that for multivariate matrices, the order of the arguments is important. 
In the VARYING matrix case, the arithmetic operations are performed 
matrix-by-matrix, for each value of the independent variable. The following 
example illustrates this:

A two-row and one-column VARYING matrix, vmat3, is constructed with three 
independent variables values.

vmat3 = vpck([2 2 4 4 8 8]',[0 1 2]'); 
minfo(vmat3) 

varying: 3 pts 2 rows 1 cols

madd(mat1,mat2)

mat2

mat1

6

?� h+

�

�

mmult(mat1,mat2)

�mat2�mat1�
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The VARYING matrix vmat3 is multiplied by vmat to form vmat4 and the value 
of the resulting matrix at the independent variables between 0 and 0.5 are 
displayed.

vmat4 = mmult(vmat,vmat3); 
minfo(vmat4) 60.23in 

varying: 3 pts 2 rows 1 cols

see(xtract(vmat4,0,0.5)) 

2 rows 1 column

iv = 0
0
1.5000

Each matrix in vmat is 2 × 2. Each matrix in vmat3 is 2 × 1, and so the 
multiplication results in each matrix of vmat4 being 2 × 1. Commands madd, 
msub, and mmult allow up to nine matrices of compatible dimensions to be 
added, subtracted or multiplied simultaneously by including them as input 
arguments. When interconnecting VARYING matrices with any of the 
commands in this section, a check is made to verify that each matrix has the 
same independent variable values. If not, an error is returned.

There are additional commands for combining matrices: abv, daug, and sbs. 
These can be interpreted as placing matrices above one another, diagonal 
augmentation of matrices, and placing matrices side-by-side, as shown in the 
following figure.

abv(top,bot)

bot

top

�

�

�

�

daug(ul,lr)

ul

lr

�

�

�

�

sbs(left,right)

right

left��

�

�
6
h+
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VARYING matrices are combined as described above. For example,

see(xtract(daug(vmat,vmat3),0.5,1.5)) 

4 rows 3 columns

iv = 1

abv, daug, and sbs allow up to nine matrices of compatible dimensions to be 
combined simultaneously.

For large interconnections of matrices, it is tedious building them up 
piece-by-piece using these commands (even using an M-file to do it). The 
program sysic performs general interconnections, using algebraic descriptions 
of the relationships between the inputs, outputs, and internal matrices. See 
“Interconnection of SYSTEM Matrices: sysic”  for more detail.

µ-Tools handles CONSTANT, VARYING, and SYSTEM matrices, such that the 
following diagram is commutative.

0.2000 –0.2000 0

0.5000 1.0000 0

0 0 4.0000

0 0 4.0000
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Consider beginning in the upper-right corner (individual systems of SYSTEM 
and CONSTANT matrices) and proceeding to the lower left corner (a single 
VARYING matrix). The result will be independent of the path taken. This is 
because in linear systems, the frequency response of an interconnection is the 
algebraic interconnection of the individual frequency responses. However, due 
to numerical roundoff, the calculations actually are not commutative, and 
there may be small differences between the two results. For example, it is 
sometimes numerically better to interconnect the frequency response of two 
systems rather than interconnect the two systems and then take their 
frequency response. This can be true when there are a large number of states 
in the interconnection structure.

Interconnections involving feedback are performed with sysic, described in 
“Interconnection of SYSTEM Matrices: sysic” . The basic feedback loop 
interconnection program used by sysic is called starp, and is described in 
Chapter 4, “m-Tools Commands for LFTs” on page 4-10.

The commands (sbs, mmult, starp, etc.) to form the interconnection step are 
identical whether you are dealing with VARYING or SYSTEM 
representations.

System

Combined

VARYING Matrix

System

Combined

Systems

Individual

Systems

Individual

SYSTEM, CONSTANT

Matrices

�

�

? ?

Interconnect

Interconnect

Frequency

Response

Frequency

Response
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Plotting VARYING Matrices 
The function vplot plots VARYING matrices. The arguments for vplot are 
similar to MATLAB’s plot command, with the exception that it is not 
necessary to specify the values for the x-axis. The x-axis data corresponds to the 
independent variable’s values, which are already stored within each VARYING 
matrix. For example,

vplot(vmat) 
tmp1 = 'vplot example: vmat, matrix values'; 
tmp2 = ' vs. independent variable'; 
title([ tmp1 tmp2 ]) xlabel('independent variable value') 
ylabel('matrix element value')

Note that every element of the matrix is plotted against the appropriate 
independent variable. In the above example vmat is a 2 × 2 VARYING matrix, 
giving four elements to be plotted. There are only three values (0, 1, and 2) of 
the independent variable, and by default MATLAB draws a line between points 
on the plot.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2
vplot example:  vmat, matrix values vs. independent variable

Independent variable value
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In the MATLAB plot command, different axis types are accessed by different 
functions, loglog, semilogx, and others. In vplot the axis type is set by an 
optional string argument. The default, used in the above example, is a linear/
linear scale. The generic vplot function call looks like

vplot('axistype',vmat1,'linetype1',vmat2,'linetype2',...)

The axistype argument, a character string, allows the specification of 
logarithmic or linear axes as well as: magnitude, log magnitude, and phase. 
There are also some control-specific options: bode, nyq, and nic, which specify 
Bode, Nyquist, and Nichols plots, respectively. The complete range of choices is 
not demonstrated here. Refer to vplot in the Chapter 8, “Reference”, for more 
details. Subsequent sections introduce additional control-oriented examples 
and demonstrate other options in vplot.

The linetype arguments are optional and are identical to those in the 
MATLAB plot command.

An important feature of vplot is its ability to plot multiple VARYING matrices 
on the same plot without having to have the same independent variables. A 
vmat argument may be a CONSTANT. In this case the value of the 
CONSTANT is plotted over all independent variables. This is consistent with 
the interpretation given to CONSTANT matrices in the interconnection of 
systems. Hence a CONSTANT matrix would appear as a horizontal line on the 
plot. This is to be contrasted with a VARYING matrix containing only one data 
point, which would appear as a single point on the plot.

Consider the following example where vmat2 is a VARYING matrix with only 
one independent variable value (ie., one data point). The constant pi/2 is also 
plotted.

vplot(vmat,'r-',vmat2,'g*',pi/2,'b-.') 
title('vplot example: VARYING and CONSTANT matrices')
xlabel('Independent variable value') 
ylabel('Matrix element value')
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VARYING Matrix Functions 
Many of the MATLAB matrix functions have analogous µ-Tools functions that 
operate on VARYING matrices. These operations are performed on a 
matrix-by-matrix basis for every submatrix associated with an independent 
variable value within the VARYING matrix. If a CONSTANT matrix is the 
argument of these functions, the operation is identical to the corresponding 
MATLAB function. These functions are

The functions veval and vebe perform a named operation on VARYING 
matrices. vebe performs MATLAB or user-defined functions on the elements of 
a VARYING matrix (for example: sin, tan. . .). veval operates on the entire 
VARYING matrix and can perform any function including those with multiple 
input and output arguments. vebe and veval allow the evaluation of any 
MATLAB matrix function on VARYING matrices. The following example 
shows a VARYING matrix with only one independent variable value for 
brevity.

minfo(vmat2)
varying: 1 pts 2 rows 2 cols

see(veval('sin',vmat2))
2 rows 2 columns
iv = 1

vmat2dat = var2con(vmat2);
sin(vmat2dat)

ans = 

vabs vceil vdet vdiag veig

veval vexpm vfloor vinv vimag

vnorm vpinv vpoly vrcond vreal

vroots vschur vsvd

0.1987 –0.1987

0.4794 0.8415

0.1987 –0.1987

0.4794 0.8415
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vebe('sqrt',sin(vmat2dat))
ans = 

All arithmetic operations can be performed on VARYING matrices, sometimes 
with a built-in µ-Tools function, and sometimes resorting to veval. The 
following table summarizes some standard operation.

In each case, veval could have been used. However, veval can be quite slow, 
since it is essentially a for loop of eval commands. For that reason, some 
specific commands (madd, mmult, vldiv, etc.) are provided. The complete set of 
VARYING operations should allow you to write algorithms more easily using 
the data structures in µ-Tools.

0.4458 0 + 0.4458i

0.6924 0.9173

MATLAB Matrix Function  µ-Tools VARYING Function 

A + B +...+ H madd(A,B,...,H)

A – B –...– H msub(A,B,...,H)

A * B *...* H mmult(A,B,...,H)

A / B vrdiv(A,B)

A \ B vldiv(A,B)

A .* B veval('.*',A,B)

A ./ B veval('./',A,B)

A ^ b veval('^',A,b)

A .^b veval('.^',A,b)

A' cjt(A)

A.' transp(A)

conj(A) cj(A)

sin(A) vebe('sin',A)
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More Sophisticated SYSTEM Functions

Frequency Domain Functions
The command frsp calculates frequency responses of SYSTEM matrices. You 
can specify the frequencies at which the response is to be evaluated via the 
MATLAB logspace and linspace commands. These become the independent 
variable values in the VARYING frequency response output.

Given an input vector of N real frequencies, omega = [ω1,. . .,ωN] and a SYSTEM 
matrix sys, the µ-Tools command frsp,

sys_g = frsp(sys,omega)

calculates

C(jwiI – A)–1B + D, i = 1, . . ., N

for each independent variable wi and stores it in sys_g whose independent 
variables are the N frequency points. You can specify a discrete-time 
evaluation by specifying an optional sampling time, T. In this case each matrix 
in the VARYING output is

C(ejω,T I – A) B + D.

Consider a simple second order example. The function nd2sys creates the 
SYSTEM representation from numerator and denominator polynomials. In the 
following example the system sys1 has the transfer function

0.5s– 1+

s2 0.2s 1+ +
---------------------------------.
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The MATLAB command logspace can create a logarithmically spaced 
frequency vector.

sys1 = nd2sys([-0.5,1],[1,0.2,1]); 
minfo(sys1) 

system: 2 states 1 outputs 1 inputs

omega = logspace(-1,1,200); 
sys1g = frsp(sys1,omega); 
minfo(sys1g) 

varying: 200 pts 1 rows 1 cols

vplot('bode',sys1g)

10-2

10-1

100

101

10-1 100 101

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

-4

-2

0

2

4

10-1 100 101

P
ha

se
 (

ra
di

an
s)

Frequency (radians/sec)



2 Working with the Toolbox

2-22

You can transform sys1 to the digital domain via a prewarped Tustin 
transformation. The command tustin performs this function. In this example 
a sample time of one second is used. The prewarping frequency is chosen as one 
radian/second. For control purposes it is often better to choose the crossover 
point as the prewarp frequency.

dsys1 = tustin(sys1,1,1); 
dsys1z = frsp(dsys1,omega,1); 
vplot('bode',sys1g,dsys1z)

Time Domain Functions
Time responses of continuous systems are calculated with the function trsp. 
The required input arguments are the SYSTEM matrix and an input matrix. 
A discrete SYSTEM matrix is handled with the function dtrsp.

User-specified time functions can be created with the function siggen. siggen 
can create signals based on both random and deterministic functions. In this 
example, siggen generates an input, u, to the system, sys1. Note how a 
saturation, in this case π, is implemented.
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u = siggen('min(pi,sqrt(t)+0.25*rand(size(t)))',[0:.1:40]); 
y = trsp(sys1,u);

integration step size: 0.1

vplot(u,y) 
title('Response of sys1 (dashed) to input, u (solid)')
xlabel('Time (seconds)')

trsp calculates a default step-size based on the minimum spacing in the input 
vector and the highest frequency eigenvalue of the A matrix. For high order 
systems, we recommended you use some form of model reduction (see the 
“Model Reduction”  section in Chapter 3) to remove high frequency modes 
which do not have a significant effect on the output.
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trsp assumes that the input is constant between the values specified in the 
input vector. The following example illustrates the consequences of this 
assumption.

sys1a = pck(-1,1,1); 
minfo(sys1a)

system: 1 states 1 outputs 1 inputs
u1a = vpck([0:10:50]',[0:10:50]'); 
y1a = trsp(sys1a,u1a,60);

integration step size: 0.1
interpolating input vector (zero under hold)
minfo(y1a)

varying: 601 pts 1 rows 1 cols
vplot(u1a,'-.',y1a,'-') 
xlabel('Time: seconds') 
text(10,20,'input'), text(25,10,'output')

At first glance the output does not seem to be consistent with the plotted input. 
Remember that trsp assumes that the input is held constant between specified 
values. The vplot and plot commands display a linear interpolation between 
points. This can be seen by displaying the input signal interpolated to at least 
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as small a step-size as the default integration step (here 0.1 seconds). The 
µ-Tools function vinterp performs zero-order hold or linear interpolation of the 
independent variable.

vplot(u1a,'-.',vinterp(u1a,0.1),'--',y1a,'-') 
xlabel('Time: seconds') 
text(5,44,'dash-dot: input') 
text(5,40,'dashed: interpolated input') 
text(5,36,'solid: output')

The staircase nature of the input is now evident. To have a ramp input, you can 
use the function vinterp to provide linear interpolation as shown by the 
following example.

uramp = vinterp(u1a,0.1,60,1); 
minfo(uramp)

varying:  601 pts 1 rows 1 cols
yramp = trsp(sys1a,uramp);

integration step size: 0.1
vplot(uramp,'-.',yramp,'-') 
xlabel('Time: seconds') 
text(20,15,'output') 
text(12,20,'input')
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Note that because the input is regularly spaced, with spacing less than or equal 
to the default integration time, trsp does not interpolate the input. No final 
time was specified in the trsp argument list. However 60 seconds was specified 
to vinterp as the final time, and this became the last time in the input vector 
uramp.

To illustrate the use of dtrsp, a bilinear transformation generates a digital 
system. The sample time is chosen as 1 second. The output is plotted against a 
1 second interpolation of the input.

T = 1; 
dsys1a = tustin(sys1a,T); 
ydig = dtrsp(dsys1a,u1a,T); 
vplot(ydig,'-',vinterp(u1a,1),'-.') 
xlabel('Time: seconds')
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trsp can easily generate large VARYING matrices. If the independent 
variables are more closely spaced than necessary for a good graphical display, 
you can use the µ-Tools function vdcmate to select every nth point from the 
final output.

Note that both vinterp and vdcmate have analogous Signal Processing Toolbox 
functions, interp and decimate, but do not function in the same manner.

Signal Processing and Identification
The µ-Tools VARYING data structure provides a convenient means of storing 
large amounts of experimental data in a single MATLAB matrix. To use this in 
identification experiments, routines have been provided to perform Fast 
Fourier Transforms (FFTs) and inverse FFTs for VARYING matrices. The 
functions are vfft and vifft, respectively. These routines call the appropriate 
MATLAB fft and ifft routines to perform the FFT calculations and have the 
same function arguments as those for fft and ifft.

Note that the FFTs performed are one dimensional, irrespective of the row and 
column dimensions of the VARYING matrix. The independent variable is used 
as the index in the FFT. Consequently xfreq = vfft(xtime) works if xtime is 
a VARYING matrix with row and column dimensions greater than one. The 
result, xfreq, is a VARYING matrix of the same size and has the same number 
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of independent variables. The independent variables of xtime are assumed to 
be time in seconds. xfreq is returned with frequency (in radians/second) as the 
independent variable.

In the following example a random signal is passed through a single-input, 
two-output system and FFTs of the outputs are performed with a single vfft 
function. The sample frequency is 10 Hz, with a foldover frequency of 10π 
radians/second. This may be hard to distinguish on the log-log plot. Output 
time history plots are shown in Figure 2-1 and their FFTs are shown in 
Figure 2-2.

time = [0:0.1:102.3]'; 
u1 = siggen('rand(size(t)) - 0.5',time); 
sys2 = nd2sys(1,[5,1]); 
sys3 = abv(sys1,sys2); 
y1 = trsp(sys3,u1);

integration step size: 0.1
minfo(y1)

varying: 1024pts 2 rows 1 cols
vplot(y1) 
title('Response of sys3 (solid) to input u1 (dashed)') 
xlabel('Time: seconds')

y1f = vfft(y1); 
minfo(y1f)

varying: 1024pts 2 rows 1 cols
vplot('liv,lm',y1f) 
z='Fast Fourier Transform magnitude of sys3 response: y1'; 
title([ z ]) 
xlabel('Frequency: radians/second') 
ylabel('Magnitude')

Warning: Data includes a number that is negative or zero. The LOG 
of hits results in NaN or Infinity and is not shown on plot.
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Figure 2-1 System Response Time Histories

Figure 2-2:  FFTs of the Output
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The µ-Tools function vplot displays this warning message since there is a data 
value at zero frequency that cannot be plotted on the log frequency scale.

The Signal Processing Toolbox provides a means of performing spectral 
analysis with the function spectrum. The µ-Tools function vspect operates in 
a similar manner on VARYING matrices. Given a signal x and a signal y, 
vspect can calculate the power spectral density of x (Pxx), the power spectral 
density of y (Pyy), the cross spectral density (Pxy), the transfer function from x 
to y (Txy), and the coherence (Cxy). The VARYING matrix result will have the 
following five columns, [Pxx, Pyy, Pxy, Txy, Cxy]. The command vspect(x,m) will 
calculate the power spectral density of each element of the VARYING matrix, 
x, using averaged FFTs of length m. The algorithm is exactly that used for 
spectrum. See the Signal Processing Toolbox for further information.

The calculation of transfer functions using vspect restricts the input x to be a 
one-by-one VARYING matrix and the outputs y to be an nr × 1 VARYING 
matrix. This corresponds to being able to do single-input, multiple-output 
(SIMO) identification experiments for a system with nr outputs. Each row of 
the result then corresponds to an output or its associated SISO transfer 
function. The calling sequence for vspect is vspect(x,y,m). 

In the following example, vspect estimates the single-input, two-output 
transfer function from the data generated in the previous example. A small 
amount of random noise is added to the output, y1, to make the problem more 
realistic. 512 point FFTs are applied to the data with an overlap of 256 points. 
An optional Hamming window, the fifth input argument, is used on the data in 
conjunction with the FFTs. The fourth column of the output is the estimated 
transfer function, which is displayed in Figure 2-3 using the sel function.

noise1 = siggen('0.05*(rand(2,1)-[0.5;0.5])',time); 
y1meas = madd(y1,noise1); 
P1 = vspect(u1,y1,512,256,'hamming');
3 hamming windows in averaging calculation
minfo(P1)

varying: 256 pts 2 rows 5 cols
vplot('bode',sel(P1,[1:2],4),'-',frsp(sys3,omega),'-.') 
tmp1 = 'sys3 (dash-dot) and estimated'; 
tmp2 = ' transfer function (solid)'; 
title([ tmp1 tmp2 ])
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Figure 2-3:  Estimated Transfer Functions of the System

The command fitsys can be used to construct a state-space realization of the 
estimated transfer function data. The first input argument to fitsys is the 
frequency response data as a VARYING matrix. This argument, frdata, can 
have dimension of a single-input/multi-output or multiple-input/single-output 
VARYING matrix. The second input argument, ord, is the state-order of the 
desired fit. The third input argument, weight is a weighting matrix with the 
same independent variable values as frdata. The fourth input argument, code, 
can be set to restrict the curve fitting algorithm to stable transfer functions. 
The default value for weight is 1, and the default value of code is 0, placing no 
restriction on the location of the rational fit’s poles. The output of fitsys is the 
SYSTEM sys. The state-order of sys is ord.

In this example fit the single-input, two-output estimated transfer function 
data with a third order model. Recall that the fourth column of P is the 
estimated transfer function data. We will restrict the fitting algorithm to 
consider only frequency points between 0.1 rad/sec and 10 rad/sec. A plot of the 
estimated transfer function data and the third order model, sysord3, is shown 
in Figure 2-4. Notice that the poles of sysord3 are very close to the poles of 
sys3, which was used to create the estimated transfer function data.
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estdata = sel(P1,[1:2],4); 
sysord3 = fitsys(xtract(estdata,0.1,10),3); 
vplot('bode',estdata,'-',frsp(sysord3,estdata),'-.') 
tmp1 = 'sysord3 (dashed) and estimated'; 
tmp2 = ' transfer function (solid)'; 
title([ tmp1 tmp2 ]) 
rifd(spoles(sysord3))

rifd(spoles(sys3))

real imaginary frequency damping

–3.1841e–01 –0.0000e+00 3.1841e–01 1.0000e+00

–1.1555e-01 –9.8732e–01 9.9406e–01 1.1624e–01

–1.1555e-01 9.8732e–01 9.9406e–01 1.1624e–01

real imaginary frequency damping

–2.0000e–01 0.0000e+00 2.0000e–01 1.0000e+00

1.0000e–01 –9.9499e–01 1.0000e+00 1.0000e–01

–1.0000e–01 9.9499e–01 1.0000e+00 1.0000e–01
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Figure 2-4:  Estimated Transfer Functions and Third Order Model

10
1

10
0

10
1

10
2

400

200

0

P
ha

se
 (

de
gr

ee
s)

Frequency (radians/sec)

10
1

10
0

10
1

10
2

10
4

10
2

10
0

10
2

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

sysord3 (dashed) and estimated transfer function (solid)



2 Working with the Toolbox

2-34

Interconnection of SYSTEM Matrices: sysic 
µ-Tools has a simple linear interconnection program called sysic. sysic forms 
linear interconnections of CONSTANT and SYSTEM matrices (or CONSTANT 
and VARYING matrices) simply by calculating the loop equations of the 
interconnection.

Using sysic involves setting up several variables in the MATLAB workspace, 
and then running the script-file sysic. The defined variables delineate the 
details of the interconnection.

In order to explain the meaning of the sysic commands, consider a three-input, 
two-output SYSTEM matrix T,

which has internal structure
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Variable Descriptions
Following are descriptions of the variables required by sysic.

systemnames
This variable is a character string, which contains the names of the matrices 
(ie., the subsystems) used in the interconnection. The names must be separated 
by spaces and/or tabs, and there should be no additional punctuation. The 
order in which the names appear is not important. Each named system must 
exist in the MATLAB workspace at the time the program sysic is run.

For the interconnection shown, with four components, k, p, act, and wt, the 
following is an appropriate definition for the variable systemnames.

systemnames = ' k p act wt ';

The name of SYSTEM variables used within the sysic program is limited to 10 
characters. This limitation is due to the MATLAB 19 character limitation on 
the workspace variable names.

inputvar
This variable is a character string, with names of the various external inputs 
that are present in the final interconnection. The input names are separated 
by semicolons, and the entire list of input names is enclosed in square brackets 
[ ]. Inputs can be multivariable signals, for example a windgust input with 
three directions (x, y, and z) is specified by using windgust{3}. This indicates 
three-variable input to the interconnection called windgust. Alternatively, this 
could be specified as three separate, scalar inputs, say, wingustx, windgusty, 
and windgustz. The order that the input names appear in the variable 
inputvar is the order that the inputs are placed in the interconnection.

This simple interconnection has three external scalar inputs: sensor noise, 
temperature disturbance, and a reference input.

inputvar = '[ noise; deltemp; setpoint]';

outputvar
This variable is a character string, describing the external outputs of the 
interconnection, which must be linear combinations of the subsystem outputs 
and the external inputs. Semicolons separate the channels of the output 
variables. Between semicolons, signals can be added and subtracted, and 
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multiplied by scalars. For multivariable subsystems, arguments within 
parentheses specify which subsystem outputs to use and in what order. For 
instance, plant(2:5,8,1,9:11) specifies outputs 2, 3, 4, 5, 8, 1, 9, 10, 
11 from the system plant. If no arguments are specified with a system, then it 
is assumed that all outputs are being used, and in the order they appear in that 
system.

In this example, the two outputs of the interconnection consist of the first 
output of the plant (scaled by 57.3 to change units from radians to degrees) 
along with a tracking error, which is the difference between the setpoint input 
and the second plant output.

outputvar = '[ 57.3*p(1); setpoint - p(2) ]';

input_to_sys
This variable denotes the inputs to a specific system. Each subsystem named 
in the variable systemnames must have a variable set to define the inputs to the 
subsystem. If the system name is controller, then call the variable that must 
be set using input_to_controller. Specify it in the same manner that the 
variable outputvar is set, with inputs consisting of linear combinations of 
subsystem outputs and external inputs. Separate channels are separated by 
semicolons, and the order of the inputs in the variable should match the order 
of the inputs in the system itself.

Corresponding to the systemnames variable set above, there are four input_to_ 
statements required, which are

input_to_k = '[ noise + p(2); setpoint ]'; 
input_to_act = '[ k ]'; 
input_to_wt = '[ deltemp ]'; 
input_to_p = '[ wt; act ]';

This means that the input to the controller consists of the sensor noise plus the 
second output of the plant, and the reference input. The input to the actuator 
is the output of the controller. The input to the weighting function is the 
temperature disturbance, and the input to the plant consists of the output of 
the weighting function, followed by the output of the actuator.

sysoutname
This character string variable is optional. If it exists in the MATLAB 
workspace when sysic is run, the interconnection that is created by sysic is 
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placed in a MATLAB variable whose name is given by the string in 
sysoutname. If this variable does not exist in the workspace, then the 
interconnection is automatically placed in the variable ic_ms.

The command line

sysoutname = 'T';

will cause sysic to store the final interconnection in a SYSTEM matrix called 
T.

cleanupsysic
This variable is used to clean up the workspace. After running sysic, all of the 
above variables that describe the interconnection are left in the workspace. 
These will be automatically cleared if the optional variable cleanupsysic is set 
to the character string yes. The default value of the variable is no, which does 
not result in any of the user-defined sysic descriptions being cleared. The 
MATLAB matrices listed in the variable systemnames are never automatically 
cleared.

Running sysic
If the variables systemnames, inputvar, and outputvar are set, and for each 
name name_i appearing in systemnames, the variable input_to_name_i is set, 
then the interconnection is created by running the M-file sysic. Depending on 
the existence/nonexistence of the variable sysoutname, the resulting 
interconnection is stored in a user-specified MATLAB variable or the default 
MATLAB variable ic_ms.

Within sysic, error-checking of the consistency and availability of subsystem 
matrices and their inputs aid in debugging faulty sysic interconnection 
descriptions.

The input/output dimensions of the final interconnection are defined by 
inputvar and outputvar variables. 

Returning to the initial example, the following sysic commands were used to 
generate the three-input, two-output SYSTEM matrix clp. (Note that the 
dimensions of the variables k, p, act, and wt must be consistent with the 
problem description.)
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systemnames = ' k p act wt '; 
inputvar = '[ noise; deltemp; setpoint]'; 
outputvar = '[ 57.3*p(1); setpoint - p(2) ]'; 
input_to_k = '[ noise + p(2); setpoint ]'; 
input_to_act = '[ k ]'; 
input_to_wt = '[ deltemp ]'; 
input_to_p = '[ wt; act ]'; 
sysoutname = 'clp'; cleanupsysic = 'yes'; 
sysic;

The syntax of sysic is limited, and for the most part restricted to what is 
shown here. Some additional features are illustrated in the more complicated 
demonstration problems.

HIMAT Design Example
The HIMAT example provides another example of how to construct 
interconnection systems from block diagram descriptions. The HIMAT plant 
model is described in more detail in the section, “HIMAT Robust Performance 
Design Example” in Chapter 7. The interconnection diagram shown in 
Figure 2-5 corresponds to the HIMAT design example.

Figure 2-5:  HIMAT Interconnection

Given that there are four SYSTEM matrices, named himat, wdel, wp, and k, in 
the MATLAB workspace, each with two inputs and two outputs, the following 
10 lines form the sysic commands to make the interconnection structure 
shown below, which is placed in the variable clp. These can be executed at the 
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command line (as shown) or placed in a script file. The command mkhimat needs 
to be run initially to create himat, wdel, and wp.

mkhimat 
himatic 
k = zeros(2,2); 
systemnames = ' himat wdel wp k '; 
inputvar = '[ pertin(2) ; dist(2) ]'; 
outputvar = '[ wdel ; wp ]'; 
input_to_himat = '[ k + pertin ]'; 
input_to_wp = '[ dist + himat ]'; 
input_to_wdel = '[ k ]'; 
input_to_k = '[ -dist - himat ]'; 
sysoutname = 'clp'; 
cleanupsysic = 'yes'; 
sysic;

The final interconnection structure is located in clp with two sets of inputs, 
pertin and dist, and two sets of outputs w and e, corresponding to the 
perturbation and error outputs.

clp
pertin

dist

w1; w2

e1; e2
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�
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�
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This chapter covers an introduction to control analysis and design, 
sampled-data control, and model reduction.

Optimal Feedback Control

Performance as Generalized Disturbance Rejection
The modern approach to characterizing closed-loop performance objectives is to 
measure the size of certain closed-loop transfer function matrices using various 
matrix norms. Matrix norms provide a measure of how large output signals can 
get for certain classes of input signals. Optimizing these types of performance 
objectives, over the set of stabilizing controllers is the main thrust of recent 
optimal control theory, such as L1, H2, and H∞, and optimal control. Hence, it 
is important to develop a clear understanding of how many types of control 
objectives can be posed as a minimization of closed-loop transfer functions.

Consider a tracking problem, with disturbance rejection, measurement noise, 
and control input signal limitations, as shown in Figure 3-1. K is some 
controller to be designed and G is the system we want to control.

Figure 3-1  Typical Closed-Loop Performance Objectives

A reasonable, though not precise, design objective would be to Design K to keep 
tracking errors and control input signal small for all reasonable reference 
commands, sensor noises, and external force disturbances.

Hence, a natural performance objective is the closed-loop gain from exogenous 
influences (reference commands, sensor noise, and external force disturbances) 
to regulated variables (tracking errors and control input signal). Specifically, 
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let T denote the closed-loop mapping from the outside influences to the 
regulated variables,

We can assess performance by measuring the gain from outside influences to 
regulated variables. In other words, good performance is associated with T 
being small. Since the closed-loop system is a multi-input, multi-output 
(MIMO) dynamical system, there are two different aspects to the gain of T:

• Spatial (vector disturbances and vector errors)

• Temporal (dynamical relationship between input/output signals)

To quantify the term gain mathematically, we need to define some additional 
things.

Norms of Signals and Systems
There are several ways of defining norms of a scalar signal e(t) in the time 
domain. We will often use the 2-norm, (L2-norm), for mathematical 
convenience, which is defined as

If this integral is finite, then the signal e is square integrable, denoted as e ∈ 
L2. For vector-valued signals,

tracking error
control input

T
reference

external force
noise

=

regulated variables outside influences
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the 2-norm is defined as

In µ-Tools the dynamical systems we deal with are exclusively linear, with 
state-space model

or, in the transfer function form

e(s) = T(s)d(s), T(s) := C(sI – A)–1B + D

Two mathematically convenient measures of the transfer matrix T(s) in the 
frequency domain are the matrix H2 and H∞ norms,

where the Frobenious norm (see the MATLAB norm command) of a complex 
matrix M is

Both of these transfer function norms have input/output time-domain 
interpretations. If, starting from initial condition x(0) = 0, two signals d and e 
are related by

eT
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then:

• for d, a unit intensity, white noise process, the steady-state variance of e is 
||T||2.

• The L2 (or RMS) gain from ,

is equal to ||T||∞. This is discussed in greater detail in the next section.

Using Weighted Norms to Characterize 
Performance
In any performance criterion, we must also account for: 

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So, if the performance objective is in the form of a matrix norm, it should 
actually be a weighted norm

||WLTWR||

where the weighting function matrices WL and WR are frequency dependent, to 
account for bandwidth constraints and spectral content of exogenous signals. 
Within the structured singular value setting considered in Chapter 4, the most 
natural (mathematical) manner to characterize acceptable performance is in 
terms of the MIMO ||⋅||∞ (H∞) norm. For this reason, we discuss some 
interpretations of the H∞ norm.

Figure 3-2:  Unweighted MIMO System

Suppose T is a MIMO stable linear system, with transfer function matrix T(s). 
For a given driving signal , define  as the output, as shown in Figure 3-2.

d e→

max
e 2
d 2

-----------
d 0≠

T
��

~e ~d

d̃ t( ) ẽ
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Note that it is more traditional to write the diagram in Figure 3-2 with the 
arrows going from left to right as in Figure 3-3.

Figure 3-3:  Unweighted MIMO System: Vectors from Left to Right

The diagrams in Figure 3-2 and Figure 3-3 represent the exact same system. 
We prefer to write these block diagrams with the arrows going right to left to 
be consistent with matrix and operator composition.

Assume that the dimensions of T are ne × nd. Let β > 0 be defined as

(3-1)

Now consider a response, starting from initial condition equal to 0. In that case, 
Parseval’s theorem gives that

Moreover, there are specific disturbances d that result in the ratio

arbitrarily close to β. Because of this, ||T||∞ is referred to as the L2 (or RMS) gain 
of the system.

As you would expect, a sinusoidal, steady-state interpretation of ||T||∞ is also 
possible: For any frequency , any vector of amplitudes , and any 
vector of phases , with ||a||2 ≤ 1, define a time signal

T
--
~e~d

β := T ∞ := maxσ T jω( )[ ]
w R∈

ẽ 2

d̃ 2
-----------

ẽT t( )ẽ t( ) td
0
∞∫[ ]

1 2⁄

d̃
T

t( )d̃ t( ) td
0
∞∫

1 2⁄----------------------------------------------------- β≤=

ẽ 2

d̃ 2
-----------

ω R∈ a Rnd
∈

φ Rnd∈

d̃ t( )
a1 ωt φ1+( )sin

and
ωt φnd

+( )sin

=

…
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Applying this input to the system T results in a steady-state response  of the 
form

The vector  will satisfy ||b||2 ≤ β. Moreover, β, as defined in equation 
Figure 3-1, is the smallest number such that this fact is true for every ||a||2 ≤ 1, 

, and φ.

Note that in this interpretation, the vectors of the sinusoidal magnitude 
responses are unweighted, and measured in Euclidean norm. If realistic 
multivariable performance objectives are to be represented by a single, MIMO 
||⋅||∞ objective on a closed-loop transfer function, additional scalings are 
necessary. Since many different objectives are being lumped into one matrix 
and the associated cost is the norm of the matrix, it is important to use 
frequency-dependent weighting functions, so that different requirements can 
be meaningfully combined into a single cost function. Diagonal weights are 
most easily interpreted.

Consider the diagram of Figure 3-4, along with Figure 3-2.

Assume that WL and WR are diagonal, stable transfer function matrices, with 
diagonal entries denoted Li and Ri.

Figure 3-4:  Weighted MIMO System

ẽss

ẽss t( )
b1 ωt 1+( )sin

bne
ωt ne

+( )sin

= …

b Rne∈

ω

WL

L1 0 … 0

0 L2 … 0

0 0 … Lne

=

…… …

...
WR

R1 0 … 0

0 R2 … 0

0 0 … Rnd

=

…… …

...
,

WL T WR
����

e d~d~e

e = WL~e = WLT
~d = WLTWRd
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Bounds on the quantity ||WLTWR||∞ will imply bounds about the sinusoidal 
steady-state behavior of the signals and  in Figure 3-2. Specifically, 
for sinusoidal signal , the steady-state relationship between ,  and 
||WLTWR||∞ is as follows: The steady-state solution , denoted as

(3-2)

satisfies for all sinusoidal input signals  of the form

(3-3)

satisfying

if and only if ||WLTWR||∞ ≤ 1.

This approximately (very approximately — the next statement is not actually 
correct) implies that ||WLTWR||∞ ≤ 1 if and only if for every fixed frequency , 
and all sinusoidal disturbances  of the form (3-3) satisfying

the steady-state error components will satisfy

d̃ ẽ(= Td̃)
d̃ ẽ(= Td̃) d̃

ẽss

ẽss t( )
ẽ1 ωt 1+( )sin

ẽne
ωt nd

+( )sin

= …

ϕ

ϕ

WLi
jw( )ẽi

2 1≤
i 1=

ne∑ d̃

d̃ t( )
d̃1 ωt φi+( )sin

d̃nd
ωt φnd

+( )sin

= …

d̃i
2

WRi
jω( )

2
---------------------------

i 1=

nd

∑ 1≤

ω
d̃

d̃i WRi
jω( )≤

ẽi
1

WLi
jω( )

------------------------≤
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This shows how one could pick performance weights to reflect the desired 
frequency-dependent performance objective. Use WR to represent the relative 
magnitude of sinusoids disturbances that might be present, and use  to 
represent the desired upper bound on the subsequent errors that are produced. 

Remember, though, the weighted H∞ norm does not actually give element- 
by-element bounds on the components of  based on element-by-element 
bounds on the components of . The precise bound it gives is in terms of 
Euclidean norms of the components of  and  (weighted appropriately by 
WL(j ) and WR(j )).

1
WL
---------

ẽ
d̃

ẽ d̃
ω ω
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Interconnection with Typical MIMO Performance Objectives
Throughout this manual, we formulate closed-loop performance objectives as 
weighted closed-loop transfer functions which are to be made small through 
feedback. A generic example, which includes many relevant terms, is shown in 
block diagram form in Figure 3-5. In the diagram, G denotes the plant model 
and K is the feedback controller.

Figure 3-5:  Generalized and Weighted Performance Block Diagram

The blocks in Figure 3-5 might be scalar (SISO) and/or multivariable (MIMO), 
depending on the specific example. The mathematical objective of H∞ control 
is to make the closed-loop MIMO transfer function Ted satisfy ||Ted||∞ < 1. The 
weighting functions are used to scale the input/output transfer functions such 
that when ||Ted||∞ < 1, the relationship between  and  is suitable.d̃ ẽ
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This shows the interpretation of the signals, weighting functions and models.

Wcmd
Wcmd is used in problems requiring tracking of a reference command. Wcmd 
shapes (magnitude and frequency) the normalized reference command signals 
into the actual (or typical) reference signals that we expect to occur. It describes 
the magnitude and the frequency dependence of the reference commands 
generated by the normalized reference signal. Normally Wcmd is flat at low 
frequency and rolls off at high frequency. For example, in a flight control 
problem, fighter pilots can (and will) generate stick input reference commands 
up to a bandwidth of about 2Hz. Suppose that the stick has a maximum travel 
of three inches. Pilot commands could be modeled as normalized signals passed 
through a first order filter

Signal Meaning 

d1 Normalized reference command 

Typical reference command 

d2 Normalized exogenous disturbances 

Typical exogenous disturbances 

d3 Normalized sensor noise 

Typical sensor noise 

e1 Weighted control signals 

Actual control signals 

e2 Weighted tracking errors 

Actual tracking errors 

e3 Weighted plant errors 

Actual plant errors

d̃1

d̃2

d̃3

ẽ1

ẽ2

ẽ3

Wact
3

1
2 2π⋅
--------------s 1+
---------------------------=



3 H∞ Control and Model Reduction

3-12

Wmodel
represents a desired ideal model for the closed-looped system, used for 
problems with tracking requirements. For good command tracking response, 
we might desire our closed-loop system to respond like a well-damped 
second-order system. The ideal model would then be

 

for specific desired natural frequency ω and desired damping ratio ζ. Unit 
conversions might be necessary too. In the fighter pilot example, suppose that 
roll-rate is being commanded, and 10°/second response is desired for each inch 
of stick motion. Then, in these units, the appropriate model is

Wdist
Wdist shapes the frequency content and magnitude of the exogenous 
disturbances affecting the plant. For example, consider an electron microscope 
as the plant. The dominant performance objective is to mechanically isolate the 
microscope from outside mechanical disturbances, such as the ground 
excitations, sound (pressure) waves, and air currents. The spectrum and 
relative magnitudes of these disturbances are captured in the transfer function 
weighting matrix Wdist. 

Wperf1
Wperf1 weights the difference between the response of the plant and the 
response of the ideal model, Wmodel. Often we desire accurate matching of the 
ideal model at low frequency and require less accurate matching at higher 
frequency, in which case Wperf1 is flat at low frequency, rolls off at first or 
second order, and flattens out at a small, nonzero value at high frequency. The 
inverse of the weight should be related to the allowable size of tracking errors, 
in the face of the reference commands and disturbances described by Wref and 
Wdist.

Wmodel 10 ω2

s
2

2ζω ω2
+ +

--------------------------------------=

Wmodel 10 ω2

s
2

2ζω ω2
+ +

--------------------------------------

·

=
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Wperf2
Wperf2 penalizes variables internal to the process G, such as actuator states 
that are internal to G, or other variables that are not part of the tracking 
objective.

Wact
Wact is used to shape the penalty on control signal use. Wact is a frequency 
varying weighting function used to penalize limits on the deflection/position, 
deflection rate/velocity, etc., response of the control signals, in the face of the 
tracking and disturbance rejection objectives defined above. Each control 
signal is usually penalized independently.

Wsnois
Wsnois represents frequency domain models of sensor noise. Each sensor 
measurement feedback to the controller has some noise, which is often higher 
in one frequency range than another. The Wsnois weight tries to capture this 
information, derived from laboratory experiments or based on manufacturer 
measurements, in the control problem. For example, medium grade 
accelerometers have substantial noise at low frequency and high frequency. 
Therefore the corresponding Wsnois weight would be larger at low and high 
frequency and have a smaller magnitude in the mid-frequency range. 
Displacement or rotation measurement is often quite accurate at low frequency 
and in steady-state, but responds poorly as frequency increases. The weighting 
function for this sensor would be small at low frequency, gradually increase in 
magnitude as a first or second system, and level out at high frequency.

Hsens
Hsens represents a model of the sensor dynamics or an external anti-aliasing 
filter. The transfer functions used to describe Hsens are based on physical 
characteristics of the individual components. These models might also be 
lumped into the plant model G.

This generic block diagram has tremendous flexibility and many control 
performance objectives can be formulated using this block diagram description. 
In Chapter 4, we see how to incorporate uncertainty into the model of G (and 
possibly Hsens as well), and how to analyze the implications on performance due 
to uncertainty. Chapter 7 presents a number of examples, which explain in 
detail how individual performance weighting functions are selected.
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Commands to Calculate the H2 and H∞ Norm 
There are five µ-Tools functions to calculate the H2 and H∞ norm.

H2 norm
The H2 norm of a stable, strictly proper continuous-time SYSTEM matrix can 
be calculated using the command h2norm. Its calling sequence is

out = h2norm(sys)

The output variable, out, is a scalar whose value is the two-norm of the 
SYSTEM sys. Given a state-space description of a system as

The H2 norm of the SYSTEM follows from the solution to the Lyapunov 
equation

AX + XA´ + BB´ = 0.

with .

H∞ norm
The H∞ norm of a stable, continuous-time SYSTEM, sys, can be calculated 
using the command hinfnorm. Its calling sequence is 

out = hinfnorm(sys,tol) 

The output from hinfnorm is a 1 × 3 vector, out, which is made up (in order) of 
a lower bound for ||sys||∞, an upper bound for ||sys||∞, and a frequency, ωo, at 
which the lower bound is achieved.

The||⋅||∞norm calculation is an iterative process and requires a test to stop. See 
the hinfnorm manual page in Chapter 8, “Reference” for more details. If the 
first input argument to hinfnorm, sys, is a VARYING matrix, then hinfnorm 

dhfnorm h2norm hinfnorm pkvnorm vnorm

sys A B
C D

=

sys 2 tr CXC( )'[ ]=

out(1) σ sys j out 3( )Þ( )( ) sys ∞ out(2)≤ ≤=
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calls pkvnorm to find the maximum singular value of the VARYING matrix 
across frequency.

The H∞ norm of a frequency VARYING matrix, sysg, can be calculated using 
pkvnorm or vnorm. The calling sequences are

[peak,indv,index] = pkvnorm(matin) 
out = vnorm(matin)

pkvnorm sweeps through the independent variable and calculates the largest 
singular value of matin. The three output arguments all pertain to the peak 
norm across frequency and its location: peak value, peak, the independent 
variable’s value, indv, and the independent variable’s index, index.

vnorm is a VARYING matrix version of MATLAB’s norm command. The 
operation is identical, except that it also works on CONSTANT and VARYING 
matrices, producing a CONSTANT or VARYING output. vnorm returns the 
matrix out with its norm at each independent variable value. The default is the 
largest singular value of matin at each independent variable value.

Discrete-Time H∞ Norm
The H∞ norm of a discrete-time SYSTEM can be calculated using the command 
dhfnorm. Its calling sequence is

out = dhfnorm(sys)

The first input argument, sys, can be either a discrete-time SYSTEM, a 
CONSTANT or VARYING matrix. The output of dhfnorm, out, is a 1 × 3 vector 
giving a lower bound, upper bound of the discrete-time H∞ norm and the 
frequency where the lower bound occurs.
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Commands to Design H∞ Output Feedback Controllers
Given a linear system P with four types of external variables:

• Exogenous disturbances (d) 

• Regulated variables, i.e., errors (e) 

• Manipulated variables, i.e., controls (u) 

• Sensed variables, i.e., measurements (y)

These are related through the linear state-space equations

The H∞ output feedback control design problem is: Does there exist a linear 
controller, K, with internal structure

such that the closed-loop system e = FL(P, K)d, 

is stable and the ∞-norm of FL(P, K) is less than γ? Note that the above block 
diagram represents a linear fractional transformation (LFT). LFTs are 
described in more detail in the “Representing Uncertainty” section in Chapter 
4. The LFT equation FL(P,K) is given by P11 + P12K(I – P22K)–1P21.

The standard state-space technique to calculate H∞ output feedback 
controllers is to select a value of γ and determine if there exists a controller K 
such that ||FL(P,K)||∞ < γ. This value of γ is updated based on a modified 

P

A B1 B2

C1 D11 D12

C2 D21 D22

A B
C D

C sI A–( ) 1– B D+= = =

K
AK BK

CK DK

=

P

K
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bisection algorithm, called γ iteration. This iteration procedure continues until 
the magnitude of the difference between the smallest γ value that has passed 
and the largest γ value that has failed is small.

Two functions are included in µ-Tools to synthesize continuous-time H∞ 
controllers. hinfsyn and hinfsyne calculate the H∞ output feedback 
(sub)optimal controller. The hinfsyn command constructs the standard 
centralized H∞ controller whereas the hinfsyne command constructs the H∞ 
(sub)optimal controller that minimizes the entropy integral at a specific 
frequency. The default in hinfsyne is to minimize the entropy integral at ∞. 
Both hinfsyn and hinfsyne commands implement the full general output 
feedback equations based on the interconnection structure P. The complete set 
of equations and results for the H∞ control problem can be found in the “H• 
Output Feedback” section of this chapter and in references [DoyGKF] and 
[GloD].

The following assumptions are made about the open-loop system P in the 
hinfsyn and hinfsyne commands:

(A1) (A,B2) is stabilizable and (C2,A) is detectable. 

(A2) D12 is full column rank and D21 is full row rank. 

(A3) has full column rank for all ω. 

(A4) has full row rank for all ω.

hinfsyn and hinfsyne return the H∞ controller, the closed-loop system, and 
the γ level achieved.

The hinfsyn and hinfsyne programs provide a γ iteration using a modified 
bisection method. You select a high and low value of γ, gamma_max and 
gamma_min. The bisection method iterates on the value of γ in an effort to 
approach the optimal H∞ control design. If the value gamma_max equals 
gamma_min, only one γ value is tested. The bisection algorithm stops when the 
difference between the smallest value of γ that has passed and the largest value 
of γ that has failed is less than tol.

A jωI– B2

C1 D12

A jωI– B1

C2 D21
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The calling sequence for the hinfsyn command is

[k,clp,gfin] = 
hinfsyn(p,nmeas,ncon,gamma_min,gamma_max,tol)

p is the SYSTEM interconnection structure, nmeas is the number of 
measurements, ncon is the number of control inputs, gamma_min and gamma_max 
are the minimum and maximum γ values, and tol is the difference between 
final γ values. The output argument k is an H∞ (sub)optimal controller, clp is 
the closed-loop system with H∞ controller implemented (clp = starp(p,k)), 
and gfin is the final γ value associated with k and clp. See the manual pages 
for hinfsyn in Chapter 8, “”  for more information. The calling sequence for the 
command is identical to. 

H∞ Design Example
The objective is to design an H∞ (sub)optimal control law for SYSTEM 
interconnection structure given by the block diagram in Figure 3-6. The 
HIMAT plant model and weightings are described in more detail in the 
“HIMAT Robust Performance Design Example” section in Chapter 7.

Figure 3-6:  H∞ Design Example Interconnection Structure

The SYSTEM interconnection structure is located in himat_ic. It consists of 
two sensor measurements, two error signals, two actuator inputs, two 
disturbance inputs, and eight states. The range of γ is selected to be between 
1.0 and 10.0 with a tolerance, tol, on the relative closeness of the final γ 
solution of 0.1. For each iteration, the program prints the current γ value being 
tested, and the results of five tests for the existence of a controller achieving 
the closed-loop norm objective. At the end of each iteration a (p) or (f) is 
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displayed denoting that the γ value either passed or failed. Upon finishing, 
hinfsyn and hinfsyne print out the lowest γ value achieved. A # sign is used in 
the printout to denote which of the five conditions for the existence of an H∞ 
(sub)optimal controller failed.

nmeas = 2; 
ncont = 2; 
gmn = 1; 
gmx = 10; 
tol = 0.1; 
mkhimat 
himatic 
minfo(himat_ic) 
system: 8 states 6 outputs 6 inputs
p = himat_ic;
[k,clp] = hinfsyn(p,ncont,nmeas,gmn,gmx,tol); 
Test bounds: 1.0000 < gamma<=10.0000

Gamma value achieved:1.6770

We can verify that the closed-loop system achieved an H∞ norm of 1.6770 by 
calculating the H∞ norm using the hinfnorm command.

hinfnorm(clp)
norm between 1.667 and 1.679
achieved near 3.814

gamma hamx_eig xinf_eig hamy–eig yinf–eig nrho–xy p/f

10.000 2.3e–02 1.2e–07 2.3e–02 –1.5e–11 0.0223 p

5.5000 2.3e–02 1.3e–07 2.3e–02 0+0e+00 0.0747 p

3.250 2.3e–02 1.3e–07 2.3e–02 0+0e+00 0.2222 p

2.125 2.3e–02 1.3e–07 2.3e–02 0+0e+00 0.5642 p

1.562 2.3e–02 1.4e–07 2.3e–02 0+0e+00 1.1977# f

1.711 2.3e–02 1.4e–07 2.3e–02 0+0e+00 0.9474 p

1.677 2.3e–02 1.4e–07 2.3e–02 –3.0e–14 0.9973 p

1.654 2.3e–02 1.4e–07 2.3e–02 0+0e+00 1.0328# f
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H∞ Optimal Control Theory
This part of the H∞ chapter presents simple state-space formulae for all 
controllers solving a standard H∞ problem: For a given number γ ≥ 0, find all 
stabilizing controllers such that the H∞ norm of the closed-loop transfer 
function is less than γ. Under these conditions, a parametrization of all 
controllers solving the problem is given as a linear fractional transformation 
(LFT) on a contractive, stable free parameter. The state dimension of the 
coefficient matrix for the LFT equals that of the plant, and has a separation 
structure reminiscent of classical LQG (i.e., H2) theory. The results are 
essentially from reference [GloD2] with proofs removed. This directly 
generalizes the results in reference [DoyGKF] and [GloD]. It is assumed that 
the reader has at least read [DoyGKF] before attempting to read the material 
to follow.

Two popular performance measures in optimal control theory are H2 and H∞ 
norms. Recall that they defined in the frequency domain for a stable transfer 
matrix P(s) as

The former arises when the exogenous signals either are fixed or have a fixed 
power spectrum; the latter arises from (weighted) balls of exogenous signals. 
H2-optimal control theory was heavily studied in the 1960’s as the Linear 
Quadratic Gaussian (LQG) optimal control problem; H∞-optimal control theory 
is continuing to be developed. We assume the reader either is familiar with the 
engineering motivation for these problems, or is interested in the results of this 
chapter for some other reason.

The basic block diagram used in this chapter is

where P is the generalized plant and K is the controller. Only finite 
dimensional linear time-invariant (LTI) systems and controllers will be 
considered. The generalized plant P contains what is usually called the plant 

P 2 := 1
2π
------ trace
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in a control problem plus all weighting functions. The signal d contains all 
external inputs, including disturbances, sensor noise, and commands, the 
output e is an error signal, y is the measured variables, and u is the control 
input. The diagram is also referred to as a linear fractional transformation 
(LFT) on K and P is called the coefficient matrix for the LFT. The resulting 
closed loop transfer function from d to e is denoted by Ted = FL(P,K).

The main H∞ output feedback results are presented in the “H• Output 
Feedback” section. The proofs of these results exploit the separation structure 
of the controller. If perfect measurements of the states (x) and the disturbances 
(d) are available (this is defined as the Full Information problem), then the 
central controller is simply a gain matrix F∞, obtained through finding a 
certain stable invariant subspace of a Hamiltonian matrix. Also, the optimal 
output estimator is an observer whose gain is obtained in a similar way from a 
dual Hamiltonian matrix. These special cases are described in the “H• Full 
Information and Full Control Problems” section. In the general output 
feedback case the controller can be interpreted as an optimal estimator for F∞x. 
Furthermore, the two Hamiltonians involved in this solution can be associated 
with full information and output estimation problems. 

As mentioned, this material is taken primarily from [GloD2], which is a direct 
generalization of [DoyGKF], and contains a substantial repetition of material. 
Roughly speaking, [GloD2] proves those results in [GloD] which were stated 
without proof, using [DoyGKF] machinery, which considered a less general 
problem. An alternative approach in relaxing some of the assumptions in 
[DoyGKF] is to use loop-shifting techniques as in [ZhouK], [GloD], and more 
completely in [SafLC]. We also consider some aspects of generalizations to the 
≤ case, primarily to indicate the problems encountered in the optimal case. A 
detailed derivation of the necessity of the generalized conditions for the Full 
Information problem is given. In keeping with the style of [GloD] and 
[DoyGKF], we don’t present a complete treatment of the ≤ case. Complete 
derivations of the optimal output feedback case can be found in [GlovM] using 
different techniques.
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Historical Perspective
This section is not intended as a review of the literature in H∞ theory, but 
rather an attempt to outline some of the work that led up to and most closely 
touches on [DoyGKF], [GloD], and [GloD2]. Control, history For a more 
extensive bibliography and review of earlier literature, the interested reader 
might see [Fran1] and [FranD].

Zames’ [Zame] original formulation of H∞ optimal control theory was in an 
input-output setting. Most solution techniques available at that time involved 
analytic functions (Nevanlinna-Pick interpolation) or operator-theoretic 
methods [Sara], [AdAK], and [BallH]. An earlier state-space solution was 
presented in [Doy1], in which the steps were as follows: parametrize all 
internally stabilizing controllers via Youla [YouJB]; obtain realizations of the 
closed-loop transfer matrix; convert the resulting model-matching problem into 
the equivalent 2 × 2-block general distance or best approximation problem 
involving mixed Hankel-Toeplitz operators; reduce to the Nehari problem 
(Hankel only); and solve the Nehari problem by the procedure of [Glo1]. Both 
[Fran1] and [FranD] give expositions of this approach, which will be referred 
to as the “1984” approach.

In a mathematical sense, the 1984 procedure solved the general rational H∞ 
optimal control problem and much of the subsequent work in H∞ control theory 
focused on the 2 × 2-block problems, either in the model-matching or general 
distance forms. Unfortunately, the associated complexity of computation was 
substantial, involving several Riccati equations of increasing dimension, and 
formulae for the resulting controllers tended to be very complicated and have 
high state dimension. Encouragement came from [LimH] who showed, for 
problems transformable to 2 × 1-block problems, that a subsequent minimal 
realization of the controller has state dimension no greater than that of the 
generalized plant G. This suggested the likely existence of similarly low 
dimension optimal controllers in the general 2 × 2 case.

Additional progress on the 2 × 2-block problems came from [BallC], who gave a 
state-space solution involving three Riccati equations. [JonJ] showed a 
connection between the 2 × 1-block problem. [FoisT] developed an interesting 
class of operators called skew Toeplitz to study the 2 × 2-block problem. Other 
approaches have been derived by [Hung] using an interpolation theory 
approach, [Kwak] using a polynomial approach, and [Kim] using a method 
based on conjugation.
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In addition to providing controller formulae that are simple and expressed in 
terms of plant data, the methods in the present approach are a fundamental 
departure from the earlier work described above. In particular, the Youla 
parametrization and the resulting 2 × 2-block model-matching problem of the 
1984 solution are avoided entirely; replaced by a pair of 2 × 1-block problems 
and a separation argument. The entire development uses simple and familiar 
tools, in the style of [Will1] relying on state feedback and observer-based 
control methods and more straightforward and elegant use of operator theory. 
Another strong influence on this work is Redheffer’s work [Red2] on linear 
fractional transformations.

Independent encouragement for a simpler approach to the H∞ problem came 
from papers by [KhaPZ] and [ZhoK]. They showed that for the state-feedback 
H∞ problem one can choose a constant gain as a (sub)optimal controller. In 
addition, a formula for the state-feedback gain matrix was given in terms of an 
algebraic Riccati equation. These results are similar to those in the “H• Full 
Information and Full Control Problems” section, though the proof techniques 
are entirely different. Also, these papers established connections between H∞ 
-optimal control, quadratic stabilization, and linear-quadratic differential 
games.

As expected, the results and techniques in [DoyGKF] and [GloD2] have 
encouraged greater interest in applications of H∞ methods, in alternative 
developments of the theory using other techniques, and in extensions to more 
general problems. The state-space theory of H∞ can be carried much further, 
by generalizing time-invariant to time-varying, infinite horizon to finite 
horizon, and finite dimensional to infinite dimensional. A flourish of activity 
has begun on these problems and the already numerous results indicate, not 
surprisingly, that many of the results generalize mutatis mutandis, to these 
cases.

Notation
The notation is fairly standard. The Hardy spaces H2 and  consist of 
square-integrable functions on the imaginary axis with analytic continuation 
into, respectively, the right and left half-plane. The Hardy space H∞ consists 
of bounded functions with analytic continuation into the right half-plane. The 
Lebesgue spaces L2 = L2(–∞,∞), L2+ = L2[0,∞), and L2– = L2(–∞,0] consist 
respectively of square-integrable functions on (–∞,∞), [0,∞), and (–∞,0], and 
L∞ consists of bounded functions on (–∞,∞). As interpreted in this chapter, L∞ 

H2
⊥
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will consist of functions of frequency, L2+ and L2– functions of time, and L2 will 
be used for both.

We will make liberal use of the Hilbert space isomorphism, via the Laplace 
transform and the Paley-Wiener theorem, of L2 = L2+ ⊕ L2– in the time-domain 
with L2 = H2 ⊕  in the frequency-domain and of L2+ with H2 and L2– with 

. In fact, we will normally not make any distinction between a time-domain 
signal and its transform. Thus we may write  and then treat d as if 

. This style streamlines the development, as well as the notation, but 
when any possibility of confusion could arise, we will make it clear whether we 
are working in the time- or frequency-domain.

All matrices and vectors will be assumed to be complex. A transfer matrix in 
terms of state-space data is denoted

For a matrix , M´ denotes its conjugate transpose, 
 denotes its maximum singular value, ρ(M)denotes its 

spectral radius (if p = r), and denotes the Moore-Penrose pseudo-inverse of 
M. Im denotes image, ker denotes kernel, and . For operators, 

denotes the adjoint of Γ. The prefix B denotes the open unit ball and the 
prefix Rc denotes complex-rational.

The orthogonal projections P+ and P– map L2 to, respectively, H2 and  (or 
L2+ and L2–). For , the Laurent or multiplication operator  
for frequency-domain  is defined by MPd = Pd. The norms on L∞ and L2 
in the frequency-domain were defined in the “Performance as Generalized 
Disturbance Rejection” section. Note that both norms apply to matrix or 
vector-valued functions. The unsubscripted norm || • || will denote the standard 
Euclidean norm on vectors. We will omit all vector and matrix dimensions 
throughout, and assume that all quantities have compatible dimensions.

H2
⊥

H2
⊥

d L2+∈
d H2∈

A B
C D

 := C sI A–( ) 1– B D+

M Cp r×∈
σ M( ) ρ M′M( )1 2⁄=

M†

P~ s( ) := P s–( )′
Γ*

H2
⊥

P L∞∈ MP : L2 L2→
d L2∈
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Problem Statement
Consider the system described by the block diagram 

Both P and K are complex-rational and proper, and K is constrained to provide 
internal stability. We will denote the transfer functions from d to e as Ted in 
general and for a linear fractional transformation feedback connection as above 
we also write Ted = FL(P,K). This section discusses the assumptions on P that 
will be used. In our application we have state models of P and K. Then internal 
stability will mean that the states of P and K go to zero from all initial values 
when d = 0.

Since we will restrict our attention exclusively to proper, complex-rational 
controllers that are stabilizable and detectable, these properties will be 
assumed throughout. Thus the term controller will be taken to mean a 
controller that satisfies these properties. Controllers that have the additional 
property of being internally stabilizing will be said to be admissible. Although 
we are taking everything to be complex, in the special case where the original 
data is real (e.g., P is real-rational) then all of the results (such as K) will also 
be real.

The problem to be considered is to find all admissible K(s) such that 
||Ted||∞ < γ(≤ γ). The realization of the transfer matrix P is taken to be of the form

compatible with the dimensions , , , 

, and the state . The following assumptions are made: 

(A1) (A,B2) is stabilizable and (C2,A) is detectable. 

P

K

e

y

d

u

� �

�

-

P s( )
A B1 B2

C1 D11 D12

C2 D21 D22

A B
C D

= =

e t( ) C
p1∈ y t( ) C

p2∈ d t( ) C
m1∈

u t( ) C
m2∈ x t( ) Cn∈
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(A2) D12 is full column rank with  unitary and D21 is full row rank

with  unitary. 

(A3) has full column rank for all ω. 

(A4) has full row rank for all ω.

Assumption (A1) is necessary for the existence of stabilizing controllers. The 
assumptions in (A2) mean that the penalty on e = C1x + D12u includes a 
nonsingular, normalized penalty on the control u, and that the exogenous 
signal ω includes both plant disturbance and sensor noise, and the sensor noise 
weighting is normalized and nonsingular. Relaxation of (A2) leads to singular 
control problems.

Assumption (A3) relaxes the [DoyGKF] assumptions that (C1,A) is detectable 
and D´12C1 = 0, and (A4) relaxes (A,B1) stabilizable and B´1D21 = 0. 
Assumptions (A3) and (A4) are made for a technical reason: together with (A1) 
it guarantees that the two Hamiltonian matrices in the corresponding H2 
problem belong to dom(Ric). It is tempting to suggest that (A3) and (A4) can be 
dropped, but they are, in some sense, necessary for the methods in this chapter 
to be applicable. A further discussion of the assumptions and their possible 
relaxation will be discussed in the “Relaxing Assumptions A1–A4” section.

It will be assumed in the rest of this chapter that D22 = 0. To see how to handle 
the general case for D22 ≠ 0, suppose K is a stabilizing controller for D22 set to 
zero, and satisfies

D12 D⊥

D21

D̃⊥

A jωI– B2

C1 D12

A jωI– B1

C2 D21

FL P 0 0
0 D22

K,– 
 

∞
γ<
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then

FL(P,K(I + D22K)–1) = P11 + P12K(I + D22K – P22K)–1P21

Hence a controller K for

yields a controller  for P. The µ-Tools commands hinfsyn 
and hinfsyne handle the nonzero D22 case.

When D22 ≠ 0 there is a possibility of the feedback system becoming ill-posed 
due to  det(I +D22 = 0 (or more stringent conditions if we require 
well-posedness in the face of infinitesimal time delays [Will1]). Such 
possibilities need to be excluded.

It can be assumed, without loss of generality, that γ = 1 since this is achieved 
by the scalings γ–1D11, γ–1/2B1, γ–1/2C1, γ1/2B2, γ1/2C2, and γ–1K. This will be 
done implicitly for many of statements of this chapter.

Preliminaries
This section reviews some mathematical preliminaries, in particular the 
computation of the various norms of a transfer matrix P. Consider the transfer 
matrix

(3-4)

with A stable (i.e., all eigenvalues in the left half-plane).

The norm ||P||∞ arises in a number of ways. Suppose that we apply an 
input  and consider the output . Then a standard result is that 

FL= P 0 0
0 D22

K,–
 
 
 

⋅

P
0 0
0 D22 

 
 

–

K̃ K I D22K+( ) 1–
=

K̃ ∞( ) )

P s( ) A B
C D

=

d L2∈ e L2∈
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||P||∞ is the induced norm of the multiplication operator MP, as well as the 
Toeplitz operator .

The rest of this section involves additional characterizations of the norms in 
terms of state-space descriptions. “The Riccati Operator” section collects some 
basic material on the Riccati equation and the Riccati operator, which play an 
essential role in the development of both theories.

The Riccati Operator
Let A, Q, R be complex n × n matrices with Q and R Hermitian. Define the 2n 
× 2n Hamiltonian matrix

If we begin by assuming H has no eigenvalues on the imaginary axis, then it 
must have n eigenvalues in Re s < 0 and n in Re s > 0. Consider the two 
n-dimensional spectral subspaces χ–(H) and χ+(H): the former is the invariant 
subspace corresponding to eigenvalues in Re s < 0; the latter, to eigenvalues in 
Re s > 0. Finding a basis for χ–(H), stacking the basis vectors up to form a 
matrix, and partitioning the matrix, we get

(3-5)

where , and

(3-6)

P+MP : H2 H2→

P ∞ sup e 2 sup P+e 2 sup P+MPd 2= = =
d BL2∈ d BL

2+∈ d BH2∈

H := A R
Q A′–

χ– H( ) Im
X1

X2

=

X1,X2 Cn n×∈

H
X1

X2

X1

X2

TX, Re λi Tx( ) 0< i∀=
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If X1 is nonsingular, or equivalently, if the two subspaces

(3-7)

are complementary, we can set X := X2X1
–1. Then X is uniquely determined by 

H, i.e., H a X is a function, which will be denoted Ric; thus, X = Ric(H). We will 
take the domain of Ric, denoted dom(Ric), to consist of Hamiltonian matrices 
H with two properties, namely, H has no eigenvalues on the imaginary axis and 
the two subspaces in equation (3-7) are complementary. For ease of reference, 
these will be called the stability property and the complementary property, 
respectively. The following well-known results give some properties of X as well 
as verifiable conditions under which H belongs to dom(Ric). See, for example, 
Section 7.2 in [Fran1], Theorem 12.2 in [Wonh], and [Kuc1].

Lemma 3.1. Suppose H Œ dom(Ric) and X = Ric(H). Then

a X is Hermitian 

b satisfies the algebraic Riccati equation

A´X + XA + XRX – Q = 0

c A + RX is stable

Lemma 3.2. Suppose H has no imaginary eigenvalues, R is either positive 
semidefinite or negative semidefinite, and (A,R) is stabilizable. Then 
H Œ dom(Ric).

Lemma 3.3. Suppose H has the form

with (A,B) stabilizable and rank . Then H ∈ dom(Ric), 

X = Ric(H) ≥ 0, and ker(X) ⊂ χ := stable unobservable subspace.

By stable unobservable subspace we mean the intersection of the stable 
invariant subspace of A with the unobservable subspace of (A,C). Note that if 
(C,–A) is detectable, then Ric(H) ≥ 0. Also, note that ker(X) ⊂ χ ⊂ ker(C), so that 

χ– H( ) I, m 0
I

H A BB’–

C'C– A'–
=

A jωI+ C ’ n ω∀=
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the equation XM = C´ always has a solution for M, for example the 
least-squares solution given by .

Computing the H∞ Norm
For the transfer matrix P(s) in equation (3-4), with A stable, define the 
Hamiltonian matrix

(3-8)

(3-9)

where R = I – D´D. The following lemma is essentially from [And], [Will1], and 
[BoyBK].

Lemma 3.4. Let , then the following conditions are equivalent:

a ||P||∞ < 1

b H has no eigenvalues on the imaginary axis 

c H ∈ dom(Ric)

d H ∈ dom(Ric) and Ric(H) ≥ 0 (Ric(H) > 0 if (C,A) is observable)

Lemma 3.4 suggests the following way to compute an H∞ norm: select a 
positive number γ; test if ||P||∞ < γ by calculating the eigenvalues of H; increase 
or decrease γ accordingly; repeat. Thus H∞ norm computation requires a 
search, over either γ or ω. We should not be surprised by similar characteristics 
of the H∞-optimal control problem. A somewhat analogous situation occurs for 
matrices with the norms  and . In 
principle,  can be computed exactly with a finite number of operations, as 
can the test for whether  (e.g., γ2I – M*M > 0), but the value of  
cannot. To compute  we must use some type of iterative algorithm.

X†C′

H := A BR 1– D ’C+ BR 1– B’

C ’– I DD ’–( ) 1– C A BR 1– D ’C+( )’–

A 0
C′C– A′–

B
C′D–

R 1–
D′C B′+=

σ D( ) 1<

M 2
2 trace M*M( )= M ∞ σ M[ ]=

M 2
2

σ M( ) γ< σ M( )
σ M( )
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H∞ Full Information and Full Control Problems
In this section we discuss four problems from which the output feedback 
solutions will be constructed via a separation argument. These special 
problems are central to the whole approach taken in this chapter, and as we 
shall see, they are also important in their own right. All pertain to the standard 
block diagram,

but with different structures for P. The problems are labeled

FC and OE are natural duals of FI and DF, respectively. The DF solution can 
be easily obtained from the FI solution, as shown in the “Disturbance 
Feedforward and Output Estimation” section. The output feedback solutions 
will be constructed out of the FI and OE results. A dual derivation could use 
the FC and DF results. 

The FI and FC problems are not, strictly speaking, special cases of the output 
feedback problem, as they do not satisfy all of the assumptions. Each of the four 
problems inherit certain of the assumptions A1–A4 from the “Problem 
Statement” section as appropriate. The terminology and assumptions will be 
discussed in the subsections for each problem. In each of the four cases, the 
results are necessary and sufficient conditions for the existence of a controller 
such that ||Ted||∞ < γ and the family of all controllers such that ||Ted||∞ < γ. In all 
cases, K must be admissible.

FI Full information

FC Full control 

DF Disturbance feedforward (to be considered in the “Disturbance 
Feedforward and Output Estimation” section)

OE Output estimation (to be considered in the “Disturbance 
Feedforward and Output Estimation” section) 

P

K

e

y

d

u

� �

�

-
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The H∞ solution involves two Hamiltonian matrices, H∞ and J∞, which are 
defined as follows:

(3-10)

(3-11)

If H∞ ∈ dom(Ric) then let X1, X2 be any matrices such that

(3-12)

Similarly if J∞ ∈ dom(Ric) then let Y1, Y2 be any matrices such that

(3-13)

Also define

(3-14)

Finally define the state feedback and output injection matrices as

R := D′1•D1•
γ2Im1

0

0 0
, where D1• := D11 D12–

R̃ := D•1D′•1
γ2Ip1

0

0 0
, where D•1 := 

D11

D21

–

H∞ := A 0
C′– 1C1 A′

B
C′– 1D1•

R 1–
D′1•C1 B′–

J∞ := A′ 0
B– 1B′1 A–

C′
B– 1D′•1

R̃
1–

D•1B′1 C–

H∞
X1

X2

X1

X2

TX, X1
′ X2 X2′ X1,= Re λi TX( ) ð 0 i∀=

J∞
Y1

Y2

Y1

Y2

TY, Y1
′ Y2 Y2′ Y1= Re λi TY( ) ð 0 i∀=

X∞ := X2X1
1– , Y∞ := Y2Y1

1–
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(3-15)

(3-16)

Problem FI: Full Information
In the full information (FI) special problem P has the following form:

(3-17)

It is seen that the controller is provided with full information since 

. In some cases, a suboptimal controller may exist which uses just 

the state feedback x, but this will not always be possible. While the state 
feedback problem is more traditional, we believe that the Full Information 
problem is more fundamental and more natural than the state feedback 
problem, once you get outside the pure H2 setting.

The assumptions relevant to the FI problem, which are inherited from the 
output feedback problem, are

(A1) (A,B2) is stabilizable. 

(A2) D12 is full column rank with  unitary. 

(A3)  has full column rank for all ω.

F := 
F1

F2

 := R–
1– D′1•C1 B′+ X∞[ ]

L := L1 L2  := – B1D′
•1 Y∞+ C′[ ]R̃

1–

P s( )

A B1 B2

C1 D11 D12

I
0

0
I

0
0

=

y x
d 

 
 

=

D12 D⊥

A jωI– B2

C1 D12
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The results for the Full Information case are as follows:

Theorem 3.5. Suppose P is given by (3-17) and satisfies A1–A3. Then,

a ∃K such that ||Ted||∞ < 1 ⌠ H∞ ∈ dom(Ric), Ric(H∞) ≥ 0

b All admissible K(s) such that ||Ted||∞ < 1 are given by

for Q ∈ RcH∞, ||Q||∞ < 1.

Problem FC: Full Control
The full control (FC) problem has P given by,

(3-18)

and is the dual of the Full Information case: the P for the FC problem has the 
same form as the transpose of P for the FI problem. The term Full Control is 
used because the controller has full access to both the state through output 
injection and to the output e. The only restriction on the controller is that it 
must work with the measurement y. The assumptions that the FC problem 
inherits from the output feedback problem are just the dual of those in the FI 
problem: 

(A1) (C2,A) is detectable. 

(A2) D21 is full row rank with  unitary. 

(A4)  has full row rank for all ω.

K s( ) Q s( )– I
T1 0

T2 I

F1 I–

F2 0
=

P s( )
A B1 I 0

C1 D11 0 I

C2 D21 0 0

=

D21

D̃⊥

A jωI– B1

C2 D21
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Necessary and sufficient conditions for the FC case are given in the following 
corollary. The family of all controllers can be obtained from the dual of 
Theorem 3.5 but these controllers will not be required in the sequel and are 
hence omitted.

Corollary 3.6. Suppose P is given by (3-18) and satisfies A1, A2 and A4. Then,

∃K such that ||Ted||∞ < 1 ⌠ J∞ ∈ dom(Ric), Ric(J∞) ≥ 0
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H∞ Output Feedback
The solution to the Full Information problem of the “H• Full Information and 
Full Control Problems” section is used in this section to solve the output 
feedback problem. First in Theorem 3.8 a so-called disturbance feedforward 
problem is solved. In this problem one component of the disturbance, d2, can be 
estimated exactly from y using an observer, and the other component of the 
disturbance, d1, does not affect the state or the output. The conditions for the 
existence of a controller satisfying a closed-loop H∞-norm constraint is then 
identical to the FI case.

The solution to the general output feedback problem can then be derived from 
the transpose of Theorem 3.7 (Corollary 3.9) by a suitable change of variables 
which is based on X∞ and the completion of the squares argument (see 
[GloD2]).

The main result is now stated in terms of the matrices defined in the “H• Full 
Information and Full Control Problems” section involving the solutions of the 
X∞ and Y∞ Riccati equations together with the state feedback and output 
injection matrices F and L. Assume that unitary changes of coordinates on ω 
and z have been carried out to give the following partitions of D, F1 and L1.

(3-19)

Theorem 3.7. Suppose P satisfies the assumptions A1–A4 of the “Problem 
Statement” section.

a There exists an admissible controller K(s) such that 
||FL(P,K)||∞ < γ (i.e., ||Ted||∞ < γ) if and only if

i γ > max 

ii H∞ ∈ dom(Ric) with X∞ = Ric(H∞) ≥ 0

iii J∞ ∈ dom(Ric) with Y∞ = Ric(J∞) ≥ 0

iv ρ(X∞Y∞) < γ2.

F′
L′ D

F′11 F′12 F′2
L′11 D1111 D1112 0

L′12 D1121 D1122 I

L′2 0 I 0

=

σ D1111 D1112,[ ],σ D′1111 D′1121,[ ]( )
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e Given that the conditions of part (a) are satisfied, then all rational 
internally stabilizing controllers K(s) satisfying ||FL(P,K)||∞ < γ are given 
by

K = FL(Ka,Φ)for arbitrary Φ ∈ RcH∞such that||Φ||∞ < γ
where

 and are any matrices (e.g., Cholesky factors) 
satisfying

and

where

(Note that if D11 = 0 then the formulae are considerably simplified.)

Ka

Â B1
ˆ

B2
ˆ

C1
ˆ

D11
ˆ

D12
ˆ

C2
ˆ

D21
ˆ

0

=

D11
ˆ

D– 1121D′1111 γ2I D1111D′1111–( )
1–
D1112 D1122,–=

D12
ˆ

C
m2 m2×

∈ D21
ˆ

C
p2 p2×

∈

D12
ˆ

D12
ˆ

I D1121– γ2I D′1111D1111–( )
1–
D1121,=

D21
ˆ

D21
ˆ

I D′1112– γ2I D1111D′1111–( )
1–
D1112,=

B2
ˆ

Z∞
1– B2 L12+( ) D12

ˆ
,=

C2
ˆ

D– 21
ˆ

C2 F12+( ),=

B1
ˆ

Z– ∞
1– L2 B2

ˆ
+ D̂12

1–
D̂11,=

C1
ˆ

F2 D̂11+ D̂21
1–
C
ˆ

2,=

A
ˆ

A BF+ Bˆ 1+ D̂21
1–
Cˆ 2,=

Z∞ I γ 2– Y∞X∞–( )= .
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The proof of this main result is via some special problems that are simpler 
special cases of the general problem and can be derived from the FI and FC 
problems. A separation type argument can then give the solution to the general 
problem from these special problems. It can be assumed, without loss of 
generality, that γ = 1 since this is achieved by the scalings γ–1D11, γ–1/2B1, 
γ–1/2C1, γ1/2B2, γ1/2C2, γ-1X∞, γ-1Y∞ and γ–1K. All the proofs will be given for the 
case γ = 1.

Disturbance Feedforward and Output Estimation
In the Disturbance Feedforward problem one component of the disturbance, d1, 
does not affect the state or the output. The other component of the disturbance, 
d2 (and hence the state x), can be estimated exactly from y using an observer. 
The conditions for the existence of a controller satisfying a closed-loop 
H∞-norm constraint is then identical to the Full Information case.

Theorem 3.8. (Disturbance Feedforward)

Theorem 3.7 is true under the additional assumptions that

(3-20)

In this case,

The transpose of Theorem 3.8 can now be stated to obtain another special case 
of Theorem 3.7.

Corollary 3.9. (Output Estimation)

Theorem 3.7 is true under the additional assumptions that

In this case

B1D′˜
⊥ 0,    A B1D′21C2 is stable.–=

Y∞ 0, Z I, L 0 B1D′21–===

D′⊥C1 0,    A B2D′12C1 is stable.–=

X∞ 0, Z I, F
0

D′12C1
–===
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Converting Output Feedback to Output Estimation
The output feedback case when the disturbance, d, cannot be estimated from 
the output is reduced to the case of Corollary 3.9 by the change of variables

where

We will perform the change of variables with v replacing e and r replacing d. 
Hence

and the transfer matrix from  to  is

(3-21)

Similarly substituting v for u in the equation for P gives that the transfer 

function from  to  is H as defined by

e 2
2 d 2

2
– v 2

2 r 2
2

–=

v u T2d T2, I Fx–+=

r T1 2( ) d F1x–( )=

x· A B1F1+( )x B1T1
1– r B2u+ +=

v u T2T1
1– r F2x–+=

y C2x D21T1
1– r D21F1x+ +=

r
u 

  v
y 

 

Pvyru s( ) := 

A B1F1+ B1T1
1– B2

F– 2 T2T1
1– I

C2 D21F1+ D21T1
1– 0

d
v 

  e
r 

 
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(3-22)

It can be shown that H~H = I (since ) and that AF is 
stable.

We can show with a little algebra the equivalence of the first two of the 
following block diagrams, with Tvr = FL(Pvyru,K) given by the third one.

Lemma 3.10. Let P satisfy A1–A4, and assume that X∞ exists and X∞ ≥ 0. Then 
the following are equivalent:

a K internally stabilizes P and ||FL(P,K)||∞ < 1, 

b K internally stabilizes Pvyru and ||FL(Pvyru,K)||∞ < 1

c K internally stabilizes Ptmp and ||FL(Ptmp,K)||∞ < 1,

where Pvyru is given by (3-21) and

The importance of the above constructions for Pvyru and Ptmp is that they 
satisfy the assumptions for the output estimation problem (Corollary 3.9) since 
A + BF is stable.

H

Q

e

r

d

v

� �
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Relaxing Assumptions A1–A4
In this section we indicate how the results of the “H• Output Feedback” section 
can be extended to more general cases by the relaxation of assumptions A1–A4. 
The optimal case is not considered, but the interested reader may refer to 
[GloD2].

Relaxing A3 and A4 
Suppose that,

which violates both A3 and A4 and corresponds to the robust stabilization of an 
integrator. If the controller u = –εx, for ε > 0 is used then

Hence the norm can be made arbitrarily small as ε → 0, but ε = 0 is not 
admissible since it is not stabilizing. This may be thought of as a case where 
the H∞-optimum is not achieved on the set of admissible controllers. Of course, 
for this system, H∞ optimal control is a silly problem, although the suboptimal 
case is not obviously so.

If you simply drop the requirement that controllers be admissible and remove 
assumptions A3 and A4, then the formulae in this chapter will yield u = 0 for 
both the optimal controller and the suboptimal controller with Φ = 0. This 
illustrates that assumptions A3 and A4 are necessary for the techniques in this 
chapter to be directly applicable. An alternative is to develop a theory that 
maintains the same notion of admissibility, but relaxes A3 and A4. The easiest 
way to do this would be to pursue the suboptimal case introducing ε 
perturbations so that A3 and A4 are satisfied.

Relaxing A1
If assumption A1 is violated, then it is obvious that no admissible controllers 
exist. Suppose A1 is relaxed to allow unstabilizable and/or undetectable modes 
on the jω axis, and internal stability is also relaxed to also allow closed-loop jω 
axis poles, but A2–A4 is still satisfied. It can be easily shown that under these 

P
0 0 1
0 0 1
1 1 0

=

Ted
εs–
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conditions the closed-loop H∞ norm cannot be made finite, and in particular, 
that the unstabilizable and/or undetectable modes on the jω axis must show up 
as poles in the closed-loop system.

Violating A1 and Either or Both of A3 and A4
Sensible control problems can be posed that violate A1 and either or both of A3 
and A4. For example, cases when A has modes at s = 0, which are unstabilizable 
through B2 and/or undetectable through C2, arise when an integrator is 
included in a weight on a disturbance input or an error term. In these cases, 
either A3 or A4 is also violated, or the closed-loop H∞ norm cannot be made 
finite. In many applications such problems can be reformulated so that the 
integrator occurs inside the loop (essentially using the internal model 
principle), and is hence detectable and stabilizable.

An alternative approach to such problems, which could potentially avoid the 
problem reformulation, would be to pursue the techniques in [GloD2], but relax 
internal stability to the requirement that all closed-loop modes be in the closed 
left half plane. Clearly, to have finite H∞ norm these closed-loop modes could 
not appear as poles in Ted. The formulae given in this chapter will often yield 
controllers compatible with these assumptions. You would then have to decide 
whether closed-loop poles on the imaginary axis were due to weights and hence 
acceptable or due to the problem being poorly posed as in the above example.

A third alternative is to again introduce ε perturbations so that A1, A3 and A4 
are satisfied. Roughly speaking, this would produce sensible answers for 
sensible problems, but the behavior as ε → 0 could be problematic.

Relaxing A2
In the case that either D12 is not full column rank or D21 is not full row rank, 
then improper controllers can give bounded H∞-norm for Ted, although will not 
be admissible as defined in the “Problem Statement” section. Such singular 
filtering and control problems have been well-studied in H2 theory and many 
of the same techniques go over to the H∞ -case (e.g., [Will2], [WilKS] and 
[HauS]). In particular the structure algorithm of [Silv] could be used to make 
the terms D12 and D21 full rank by the introduction of suitable differentiators 
in the controller.
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Discrete-Time and Sampled-Data H∞ Control
Discrete-Time Systems
The control of a discrete-time system described by the state difference equation

is investigated in this section. The state difference equation corresponds to the 
transfer function,

P(z) = D + C(zI – A)–1B

As in the continuous-time case, a controller with transfer function Kd(z) can be 
synthesized to make the closed-loop, H(z) = FL(P(z),Kd(z)) internally stable and

for any γ sufficiently large. This can be accomplished either directly in terms of 
the original data (A,B,C,D) or via the bilinear transformation,

which maps the unit disk in the z-plane into the left half of the s-plane for any 
h > 0. The µ-Tools command to synthesize discrete-time H∞ controllers, 
dhinfsyn, uses this bilinear transformation and the corresponding 
continuous-time µ-Tools commands.

An additional consideration is which of the controllers Kd that make ||H||∞ < γ 
should be chosen. The controller that maximizes the entropy integral,

for any |zo| > 1 can be calculated. The usual central controller, the default for 
hinfsyne, is taken as the one corresponding to zo = ∞ and gives a measure of 
how far H(ejθ) is less than γ.”
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Sampled-Data Systems
Continuous-time systems where measurements are sampled and then the 
control signal calculated by a discrete-time controller followed by a hold are 
termed sampled-data systems. Two possible H∞-type approaches to sampled 
data control law design are available in µ-Tools software.

Consider the system in Figure 3-7, where P is the continuous-time generalized 
plant, d is a continuous-time disturbance signal, e is a continuous-time error 
signal, y is the measurement to be sampled by the sampler S, with sampling 
period h, and u is the control signal, which is the output of the hold device, H, 
and is constant between sampling points.

Figure 3-7:  Sampled Data System Block Diagram

If it is assumed that the input d is in fact piecewise constant (synchronized 
with u), and that only the sampled values of e are of interest, then there is a 
discrete-time equivalent system for P that relates the discrete-time inputs and 
outputs. The controller can then be designed using discrete-time H∞ 
techniques.

This approach has two potential problems; one is that the intersample behavior 
of the outputs is ignored and the other is that the inputs are assumed piecewise 
constant. An alternative approach is to require that the induced norm between 
the inputs d and outputs e be less than γ, 

This will handle both the above difficulties and has been studied in detail by 
Bamieh and Pearson [BamP] along with a number of other researchers 
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[HarK,KabH,Toi,Yam]. It turns out that if γ is achievable then it can be 
achieved by a linear time-invariant controller of the same degree as the 
generalized plant, P. The computations for this controller involve calculating 
an equivalent discrete-time system and then using discrete-time H∞ methods.

Discrete-Time and Sampled-Data Example
The following example is meant to illustrate the discrete-time and 
sampled-data norms involved rather than be representative of controller 
design. Consider the system in Figure 3-8 where, 

Figure 3-8:  Sampled Data System Block Diagram for Simple Example

This gives the generalized plant,
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and the closed-loop is trying to match the output of F2 by the controller output 
based on the sampled input to F2 filtered by F3. P can be defined as follows.

h = 0.1;
tau1 = 0.001;
om_o = 2*pi; c = 0.05;
tau3 = 0.01;
F1 = nd2sys(1,[tau1 1]);
F2 = nd2sys(1,[omo_o(-2) 2*c/omo_o 1]);
F3 = nd2sys(1,[tau3 1]);
p_ic = abv(mmult(F1,sbs(F2,1)),sbs(F3,0));
ncon = 1; nmeas = 1;
minfo(p_ic) 
system: 4 states 2 outputs 2 inputs

The zero controller will result in a purely continuous-time system with induced 
norm given by ||P11(s)||∞.

hinfnorm(sel(p_ic,1,1)) 
norm between 10.01 and 10.02 
achieved near 6.267

Now let us design a controller for this sampled-data system using the 
corresponding sample and hold discrete-time system. The variable delay 
corresponds to the number of sample delays in the controller. 

gmin =.001; delay = 0; 
gmax = 1; 
tol = 0.001; tol2 = 0.001; 
p_ic_sh = samhld(p_ic,h); 
if delay>0,
p_ic_sh=mmult(daug(1,nd2sys(1,eye(1,delay+1))),p_ic_sh;
end
[k_d,g_d,gfin_d] = ...
dhfsyn(p_ic_sh,nmeas,ncon,gmin,gmax,tol,h,inf,-1,-2);
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Test bounds:0.0010 < gamma <=1.0000

Gamma value achieved: 0.1844

dhfnorm(g_d,tol2,h)
norm between 0.1835 and 0.1837
achieved near 31.42

The induced norm of the sampled-data system from continuous-time inputs to 
continuous-time outputs can now be calculated using the command sdhfnorm.

[gaml_d,gamu_d] = sdhfnorm(p_ic,k_d,h,delay,tol2)
gaml_d = 

2.0250e+01
gamu_d = 

2.0267e+01

The discrete-time system with piecewise constant inputs and ignoring 
intersample behavior has an induced norm of only 0.1837 whereas if the input 
is allowed to vary during the sampling period the gain can be made 100 times 
larger at 20.2. A suboptimal controller for the sampled-data system can also be 
calculated using sdhfsyn.

gamma hamx_eig xinf_eig hamy–eig yinf–eig nrho–xy p/f

1.000 3.5e–01 0.0e+00 3.5e–01 –3.9e–16 0.0337 p

0.500 3.5e–01 0.0e+00 3.5e–01 –1.1e–15 0.1345 p

0.251 3.5e–01 –8.4e–14 3.5e–01 –7.1e–14 0.5357 p

0.126 3.5e–01 0.0e+00 3.5e–01 –4.1e–16 2.1257# f

0.188 3.5e–01 –7.5e–14 3.5e–01 0.0e+00 0.9498 p

0.157 3.5e–01 0.0e+00 3.5e–01 –3.6e–16 1.3648# f

0.173 3.5e–01 –1.1e–15 3.5e–01 –8.7e–14 1.1292# f

0.181 3.5e–01 0.0e+00 3.5e–01 0.0e+00 1.0337# f

0.184 3.5e–01 0.0e+00 3.5e–01 0.0e+00 0.9904 p

0.182 3.5e–01 –3.5e–14 3.5e–01 –3.8e–16 1.0117# f

0.183 3.5e–01 –3.0e–16 3.5e–01 0+0e+00 1.0010# f
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[k_sd,gfin_sd]=sdhfsyn(p_ic,1,1,gmin,gamu_d,tol,h,delay,-2);
Test bounds:0.0010 < gamma <=20.2670

Gamma value achieved:8.9601

and the norm checked by

[gaml_sd,gamu_sd] = sdhfnorm(p_ic,k_sd,h,delay,tol2)
gaml_sd = 

8.9445e+00
gamu_sd = 

9.0028e+00

The initial design gave very low estimates of the possible gain in the system. 
The latter design indicates that no controller can give a low gain with this 
sampled-data problem. The main difficulty with this particular problem is that 

gamma hamx_eig xinf_eig hamy–eig yinf–eig nrho_xy p/f

20.267 3.5e–01  –1.6e–30 3.le–01 1.0e–09 0.0016 p

10.134 3.4e–01 1.3e–31 1.6e–01 1 0e–09 0.0087 p

 5.067 3.3e–01  –2.7e–20 8.3e–17#  ******* ******* f

 7.601 3.4e–01 2.3e–20 3.8e–15#  ******* ******* f

 8.867 3.4e–01 3.7e–21 1.2e–14#  ******* ******* f

 9.501 3.4e–01 l.le–l9 1.2e–01 1.0e–09 0.0109 p

 9.184 3.4e–01  –5.3e–20 7.6e–02 1.0e–09 0.0128 p

 9.026 3.4e–01 5.5e–21 4.2e–02 1.0e–09 0.0145 p

 8.947 3.4e–01 1.3e–31 9.4e–14#  ******* ******* f

 8.986 3.4e–01  –7.7e–20 2.7e–02 1.0e–09 0.0153 p

 8.966 3.4e–01  –1.5e–31 1.3e–02 1 0e–09 0.0160 p

 8.956 3.4e–01 4.1e–20 3.9e–13#  *******  ******* f

8.961 3.4e–01 4.9e-20 6.6e-03 1 0e–09 0.0163 p

8.959 3.4e–01 7.6e-20 8.7e-14# ******* ******* f

8.960 3.4e–01 3.5e-03 3.2e-03 1 0e–09 0.0165 p

8.960 3.4e–01 -2.3e-20 9.0e-14# ******* ******* f
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the filter F3(s) has too high a bandwidth and this gives a high potential gain for 
F3 followed by the sampler. In contrast to the continuous-time case, the 
calculation of a worst-case disturbance in the sampled-data case is not 
straightforward. However the time domain simulation of the system is now 
performed to illustrate the reason for its high gain.

tfinal = 10; 
t1 = (0:h/100:tfinal)'; 
[nr,nc] = size(t1); 
w1 = zeros(nr,nc); 
for i = 1:length(t1)/200,
w1(100*i-20:100*i) = ...
cos(i*pi/5-pi/6)*exp(h*(-20:1:0)/(100*tau3))';...
end
w = vpck(w1,t1); 
[z_d,y_d,u_d] = sdtrsp(p_ic,k-d,w,h,tfinal,h/100); 
vplot(z_d,'-',y_d,'.') 
gain_d = norm(vunpck(z-d),2)/vnorm(vunpck(w),2)
gain_d = 

1.2924e+01

The time responses are given in Figure 3-9 and the high gain achieved by the 
disturbance being large just before the sampling instant and zero elsewhere, 
hence having a relatively low total energy.
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Figure 3-9:  Discrete-Time Controller Time Response

The suboptimal sampled-data controller can be simulated with the same input 
as follows:

[z_sd,y_sd,u_sd] = sdtrsp(p_ic,k_sd,w,h,tfinal,h/100); 
vplot(z_sd,'-',y_sd,'.') 
gain_sd = norm(vunpck(z_sd),2)/vnorm(vunpck(w),2)
gain_sd = 

6.3332e-01

The time responses are given in Figure 3-10. The gain in this instance is much 
lower for this particular input. However other inputs can give a gain of close to 
nine.

The same example can be repeated for different values of the sampling period, 
h, and the controller delay, and for variations in the time constants. The two 
controllers often give very similar results, however, the discrete-time results 
obtained from samhld and dhfsyn can give optimistic gain estimates when 
compared with those obtained by sdhfsyn.
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Figure 3-10:  Sampled Data Controller Time Response
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Loop Shaping Using H∞ Synthesis
A particularly straightforward method of designing controllers is to use a 
combination of loop shaping and robust stabilization as proposed in McFarlane 
and Glover [McFG1, McFG2]. Given a system with transfer function G(s) the 
problem set up is given in Figure 3-11.

Figure 3-11:  H∞ Loop Shaping Standard Block Diagram

The first step is to design a pre-compensator W1(s), so that the gain of 
W2(s)G(s)W1(s) is sufficiently high at frequencies where good disturbance 
attenuation is required and is sufficiently low at frequencies where good robust 
stability is required. The second step is to design a feedback controller, K∞, so 
that

which will also give robust stability of the perturbed weighted plant

where NM–1 = W2GW1 is a normalized coprime factorization satisfying 
N(jω)*N(jω) + M(jω)*M(jω) = I. This stability margin is always less than 1 and 
gives a good indication of robust stability to a wide class unstructured 
perturbations. Stability margin values of ε > 0.2 – 0.3 are generally considered 
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satisfactory. The closed-loop H∞-norm performance objective has the standard 
signal gain interpretation. Finally it can be shown that the controller, K∞, does 
not substantially affect the loop shape in frequencies where the gain of W2GW1 
is either high or low, and will guarantee satisfactory stability margins in the 
frequency region of gain crossover. In the regulator setup, the final controller 
to be implemented is W1K∞W2 in the feedback configuration shown in 
Figure 3-12.

Figure 3-12:  H∞ Loop Shaping Controller Implementation

Closely related to the above problem is the approach to uncertainty using the 
gap family of metrics. These metrics, δ(G0,G1), give a numerical value between 
0 and 1 for the distance between any two linear systems G0(s) and G1(s) that 
have the same number of inputs and outputs. The gap metric was introduced 
into the control literature by Zames and El-Sakkary [ZamE] and exploited by 
Georgiou and Smith [GeoSm]. It can be computed using an H∞ optimization 
problem [Geo]. An interesting new metric, ν-gap (nugap), was derived by 
Vinnicombe [Vin] and has a frequency response interpretation. For both of 
these metrics, the following robust performance result holds [QiuD, Vin].

(3-23)

where

The nugap is always less than or equal to the gap, so its predictions using the 
above robustness results are tighter. To make use of the gap metrics in robust 
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design, weighting functions need to be introduced. In the above robustness 
result G needs to be replaced by W2GW1 and K by (similarly for G0, 
G1, K0, and K1). This makes the weighting functions compatible with the 
weighting structure in the loop shaping H∞ synthesis.

The interpretation of this result is that if a nominal plant G0 is stabilized by 
controller K0, with stability margin b(G0,K0), then the stability margin when 
G0 is perturbed to G1 and K0 is perturbed to K1 is degraded by no more than 
the above formula. Note that 1/b(G,K) is also the signal gain from disturbances 
on the plant input and output to the input and output of the controller. Model 
reduction of the system model and controller can be performed by using 
balanced truncations or Hankel norm approximation of normalized coprime 
factor representation.

If a reference signal (r) is available, then there is a variety of methods to 
incorporate the tracking error into the objective. One effective procedure is to 
choose a coprime factorization of K∞ = UV–1 and let M = V–1(r +Uy) where r is 
the reference and y the measurement. U and V can be obtained from a 
particular observer form of K∞ in such a way that with closed-loop y = Nr and 
G = NM–1 is a normalized coprime factorization [Vin]. The DC. gain of this 
controller could then be adjusted to give zero steady state tracking error. 
Alternatively, this nominal command response could be diagonalized and a 
further command compensation performed. These ideas are applied to the 
“HIMAT Robust Performance Design Example” section in Chapter 7.

W1
1– KW2

1–
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Model Reduction
It is often desirable to approximate a state-space representation of a system 
with a lower order state-space representation. This procedure is referred to as 
a model reduction. The µ-Analysis and Synthesis Toolbox (µ-Tools) provides 
several commands to aid in reducing the order of a system. These are discussed 
in this section along with an example to illustrate their use.

Given a SYSTEM matrix [A B; C D], the simplest method of model reduction 
is to truncate a part of the SYSTEM A matrix and remove the corresponding 
columns and rows of the B and C matrices. The command strunc performs this 
function. You should be careful to order the modes of the A matrix and truncate 
modes that do not significantly affect the system response. The command 
strans is useful in this context as it transforms the A matrix into block 
diagonal form with 1 × 1 or 2 × 2 blocks corresponding to the respectively real 
and complex poles in order of increasing magnitude. This is often done prior to 
truncating high frequency modes.

Truncating high frequency modes will also affect the low frequency response of 
the various transfer functions. The command sresid can be used to residualize 
the truncated modes and compensate for the zero frequency contribution of 
each truncated mode with an additional D matrix term in the resulting reduced 
order SYSTEM matrix.

More advanced model reduction techniques for stable systems can be 
performed with the µ-Tools commands sysbal and hankmr. sysbal performs a 
balanced realization on the input SYSTEM matrix, which entails balancing the 
observability and controllability Grammians (for a more detailed discussion 
see [Enn], [Glo1] and [Moo]). In its simplest form, this command will remove 
all unobservable and/or uncontrollable modes. sysbal also returns a vector of 
the Hankel singular values of the system, which can be used to further 
truncate the modes of the SYSTEM.

The following example illustrates how sysbal can be used to remove 
unobservable and uncontrollable modes. Two systems, P and C, are created and 
then interconnected with unity gain negative feedback. The closed-loop system, 
clp, is given by

clp
PC

1 PC+
----------------=
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Suppose that

P = nd2sys(1,[1,1,1]); 
C = nd2sys(1,[1,1]);

The correct way to form this closed-loop transfer function is to use

clpc = starp(mmult([1;1],mmult(mmult(P,C),[1,-1])),1,1,1);

The closed-loop SYSTEM matrix clp has three states. However, suppose 
instead the closed-loop system is formed as follows.

clp = mmult(P,C,minv(madd(1,mmult(P,C)))); 
minfo(clp) 
system: 6 states 1 outputs 1 inputs
rifd(spoles(clp)) 

The closed-loop system, clp, contains the open-loop poles of p as well as the 
closed-loop poles. Interconnecting systems with the commands mmult and madd 
often lead to nonminimal realizations. You can see that the open-loop poles are 
unobservable and/or uncontrollable by using sysbal with its second input, the 
truncation tolerance, set to zero. The output gives the Hankel singular values 
that are strictly greater than this tolerance together with a truncated balanced 
realization of this order. (A strictly positive default tolerance is also available.) 
Note that only five values are returned, the sixth being calculated as being 
identically zero, and the fourth and fifth are both zero to machine accuracy. 
strunc is then run to remove these two modes. Finally the H∞-norm of the

real imaginary frequency damping

–5.0000e–01 –8.6603e–01 l.0000e+00 5.0000e–01

–5.0000e–01 8.6603e–01 l.0000e+00 5.0000e–01

–l.0000e+00 0.0000e+00 l.0000e+00 l.0000e+00

–2.2816e–01 –1.1151e+00 1.1382e+00 2.0045e–01

–2.2816e–01 1.1151e+00 1.1382e+00 2.0045e–01

–1.5437e+00 0.0000e+00 1.5437e+00 l.0000e+00
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error between the system with the nonminimal modes truncated and the 
system formed using starp is calculated as being essentially zero.

[clpr,hanksv] = sysbal(clp,0); 
disp(hanksv') 
6.7732e-014.7580e-014.8484e-028.0919e-17
1.5746e-18
clpr = strunc(clpr,3); 
minfo(clpr)
system: 3 states 1 outputs 1 inputs
rifd(spoles(clpr))

hinfnorm(msub(clpc,clpr))
norm between 4.163e-16 and 4.167e-16
achieved near 0

A variety of norms is available to measure the error in reducing the model 
order. The Hankel-norm and H∞-norms have relatively complete theories. 
Note that the Hankel norm is the maximum of the Hankel singular values and 
is hence available from sysbal. The command hankmr calculates the optimal 
Hankel norm approximation, of a specified order, to the input system. This 
method is presented in detail in [Glo1]. The calling sequence is

[sysb,sig] = sysbal(sys) 
[sysh,sysu] = hankmr(sysb,sig,k,'d')

The sysh is stable with k poles, sysu is unstable (or anticausal), and ||sys - 
sysh - sysu||∞ = sig(k + 1). This answer is optimal. If the 'd' option of 
hankmr is used then the following bound is guaranteed,

sig(k + 1) ≤ ||sys - sysh|| ∞≤ sig(k + 1) + sig(k + 2) + ...

The lower bound holds for any sysh of degree k and for truncated balanced 
realizations the upper bound needs to be doubled.

real imaginary frequency damping

–2.2816e–01 –1.1151e+00 1.1382e+00 2.0045e–01

–2.2816e–01 1.1151e+00 1.1382e+00 2.0045e–01

–1.5437e+00 0.0000e+00 1.5437e+00 1.0000e+00
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The following example creates a 15-state system and examines three, 7-state 
reduced-order models generated by sysbal, hankmr, and sresid. First generate 
the system, which consists of 10 real poles, a resonant pole pair, and first-order 
and second-order high frequency all-pass terms.

a = -diag([.03.05.1.2.3.4 1 3 5 10]); 
b = [.03.05.1.2.3.4 1 3 5 10]'; c = ones(1,10); 
d = 0.001; 
sys1 = pck(a,b,c,d); 
sys2 = nd2sys([1.1.4],[1.1.1]); 
sys3 = nd2sys([1 -3 1000],[1 3 1000]); 
sys4 = nd2sys([1 -20],[1 20]); 
sys = mmult(sys1,sys2,sys3,sys4); 
minfo(sys)
system: 15 states 1 outputs 1 inputs

The frequency response of sys is calculated and plotted in Figure 3-13.

omega = logspace(-1,3,60); 
sys_g = frsp(sys,omega); 
vplot('bode',sys_g); 
title('Original system to be reduced')
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Figure 3-13:  Original System to be Reduced via Model Reduction Techniques

Next the balanced realization is formed and truncated to seven states. Its 
H∞-norm error is compared with the upper and lower bounds. 
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The Bode plot of the original system and the seven state, balanced realization 
model sysb7 is shown in Figure 3-14.

[sysb,sig] = sysbal(sys); 
[mattype,p,m,n] = minfo(sysb); 
disp(sig')
Columns 1 through 5
3.6422e+01 2.4906e+01 6.1381e+00 2.0261e+00 7.1689e-01
Columns 6 through 11
6.9421e-01 6.0281e-01 4.2291e-01 1.1884e-01 3.4276e-02
Columns 12 through 15
9.0070e-03 2.4834e-03 4.0909e-04 1.4544e-04 3.9050e-06
k = 7; 
sysb7 = strunc(sysb,k); 
sysb7_g = frsp(sysb7,omega); 
vplot('bode',sys_g,sysb7_g) title(['Model reduction example: 
Frequency domain']) 

tmp = hinfnorm(msub(sys_g,sysb7_g)); 
disp(['H-inf error = ' num2str(tmp)])
H-inf error = 0.8553

disp(['lower bound = ' num2str(sig(k+1))])
lower bound = 0.4229

disp(['upper bound = ' num2str(2*sum(sig(k+1:n)))])
upper bound = 1.176
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Figure 3-14:  Balanced Realization Model Reduction: Original System (solid), 
Balanced (dashed)

The seven-state optimal Hankel norm approximation to sys is calculated with 
hankmr and placed in sysha7. Figure 3-15 contains the Bode plots of original 
system, the balanced realization model, and the seven-state Hankel norm 
model.

kh = 7; 
sysha7 = hankmr(sysb,sig,kh,'d'); 
sysha7_g = frsp(sysha7,omega); 
tmp = hinfnorm(msub(sys_g,sysha7_g)); 
disp(['H-inf error = ' num2str(tmp)])
H-inf error = 0.4351
disp(['lower bound = ' num2str(sig(kh+1))]) 
lower bound = 0.4229
disp(['upper bound = ' num2str(sum(sig(kh+1:n)))])
upper bound = 0.5881
vplot('bode',sys_g,sysb7_g,sysha7_g) 
title(['Three different model reduction techniques'])
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Figure 3-15:  Model Reduction: Original System (solid), Balanced (dashed), 
Hankel (dotted)

Now obtain a truncated residualization. It turns out that the first seven poles 
with smallest modulus also have the largest H∞-norms and hence no 
reordering of the poles after strans is required.

sysr = strans(sys); 
sysrt7 = sresid(sysr,7); 
sysrt7_g = frsp(sysrt7,omega); 
tmp = hinfnorm(msub(sys_g,sysrt7_g)); 
disp(['H-inf error = ' num2str(tmp)]) 
H-inf error = 7.782
vplot('bode',sys_g,sysb7_g,sysha7_g,sysrt7_g) 
title(['Four different model reduction techniques'])
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Figure 3-16:  Model Reduction: Original System (solid), Balanced (dashed), 
Hankel (dotted), Residualized (dashed-dotted)

The four different model Bode plots are shown in Figure 3-16. The output from 
hankmr is nearly H∞-optimal and that from sysbal has a similar error and does 
not change the D matrix. The frequency responses are plotted below with 
sys-solid, sysbal-dashed, hankmr-dotted, and resid-dash/dot. Note that as 
expected sresid matches well at low frequency but not at high frequency.

The time responses of the four systems, shown in Figure 3-17, are now 
compared in response to a 1 second pulse. The same line types are used for the 
display of the time domain responses. The response of sysrt7 does not match 
sys well over the first 2 seconds but after 2 seconds the match is good.
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pulse = siggen('t<1',[0:.1:10]); 
ysys = trsp(sys,pulse); 
integration step size: 0.003162
interpolating input vector (zero order hold)
ysysb7 = trsp(sysb7,pulse); 
integration step size: 0.004127
interpolating input vector (zero order hold)
ysysha7 = trsp(sysha7,pulse); 
integration step size: 0.003548
interpolating input vector (zero order hold)
ysysrt7 = trsp(sysrt7,pulse); 
integration step size: 0.1
vplot(ysys,'-',ysysb7,':',ysysha7,'--',ysysrt7,'-.'); 
xlabel('Time: seconds') 
title('Model reduction example: time domain')

Figure 3-17:  Time Response of the Original System and the Three Reduced 
Order Models
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Note  You should not draw general conclusions from this one example as to 
the relative merits of the different schemes.

The H∞ norm of the error is not always appropriate, for example, in the system 
above none of the methods accurately matches the Bode diagram at high 
frequencies. It is therefore desirable to generate reduced-order models whose 
frequency weighted error is small. Two methods are available in µ-Tools to 
assist in this. The first method is based on frequency weighted Hankel norm 
approximation as proposed in Latham and Anderson [LatA] and finds of 
degree k to minimize the Hankel norm of the stable part of . 
Note that W1(s)~ is defined as. W1(–s)´. This is implemented in the functions 
sfrwtbal and sfrwtbld. G is required to be stable and the weights need to be 
square, stable, and minimum phase. sfrwtbal then finds a balanced 
realization of the stable part of together with its Hankel singular 
values, which in this case also provide lower bounds on the achievable error. 
The resulting balanced system is approximated using hankmr (or another 
method if preferred) and constructed using sfrwtbld. This is illustrated on 
the 15-state example with a sixth order approximation and with the relative 
error criterion, although it is not restricted to this case.

wt1 = mmult(sys1,sys2); wt2 = 1; k = 6; n = 15; 
[sysfrwtbal,sigfrwt] = sfrwtbal(sys,wt1,wt2); 
disp(sigfrwt') 
Columns 1 through 5
1.0000e+00 1.0000e+00 1.0000e+00 9.9697e-01 9.3961e-01
Columns 6 through 11
9.1022e-01 2.2177e-01 5.9077e-02 1.7448e-02 4.5526e-03
Columns 12 through 15
1.2419e-03 2.1046e-04 8.1357e-05 1.2386e-05 2.9765e-07
sysfrwtk = hankmr(sysfrwtbal,sigfrwt,k,'d'); 
sysfrwthat = sfrwtbld(sysfrwtk,wt1,wt2); 
sysfrwthat_g = frsp(sysfrwthat,omega); 
disp(hinfnorm(msub(1,vrdiv(sysfrwthat_g,sys_g)))) 
3.2401e-01
vplot('bode',sys_g,'-',sysfrwthat_g,':') 
title('sys_g (-) and sysfrwthat_g (:)')

Ĝ
W1

~ 1– G Ĝ–( )W2
~ 1–

W1
~ 1– GW2

~ 1–

Ĝ
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Figure 3-18:  Frequency Response of the Original System and Frequency 
Weighted Balanced Reduction with sfrwtbld

The frequency weighted error is close to the unachievable lower bound of 
sigfrwt(k+1). A plot of this is shown in Figure 3-18. You can verify that this 
method is optimal by checking that the Hankel norm of the stable part of the 
weighted error is sigfrwt(k+1), using sfrwtbal as follows. (Note that these 
routines use sdecomp, which decomposes a system into the sum of two systems 
with poles to the left and right of a vertical line in the complex plane.)

[sysfrwterr,sigfrwterr] =...
sfrwtbal(msub(sys,sysfrwthat),wt1,wt2); 
disp(max(sigfrwterr)); 
2.2177e-01

A method that is particularly appropriate for relative error model reduction is 
obtained using srelbal. The error criterion is the same as in the general 
frequency weighted case but with W1 = I and W2 satisfying . 
This method is related to balanced stochastic truncation as introduced by Desai 
and Pal [DesP]. The lower bounds can be obtained as above and upper bounds 
have been derived by Green [Gre] and improved by Wang and Safonov [WanS]. 
There is no requirement that the system be square or minimum phase but it 
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must not have fewer columns than rows. The resulting realization can be 
truncated as before.

[sysrelbal,sigrel] = srelbal(sys); 
sysrelbalk = strunc(sysrelbal,k); 
sysrelbalk_g = frsp(sysrelbalk,omega); 
disp(hinfnorm(msub(1,vrdiv(sysrelbalk_g,sys_g)))); 
4.7480e-01
vplot('bode',sys_g,'-',sysrelbalk_g,'--',sysfrwthat_g,':') 
title('model reduction example: relative error')

Figure 3-19:  Frequency Response of the Original System and Reduced Order 
Models Using Relative Error Methods

It can be checked that sigrel equals sigfrwt above in this case. Both methods 
perform well with results close to the lower bound and similar frequency 
responses as seen in Figure 3-19. Glover [Glo2] suggests a combination of 
additive and relative error by performing relative error model reduction of the 

augmented system, . Relative error is recovered if α = 0, and additive error 

as α → ∞. The resulting approximation can be thought of as satisfying 
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where has been made small. This is easily 

implemented using srelbal as follows to give a seventh order fit with a 
performance between the two extremes.

k = 7; alpha = 15; 
[sysrelbal,sigrel] = srelbal(abv(sys,alpha*eye(1))); 
sysrelbalk = sel(strunc(sysrelbal,k),1,1);

You can evaluate the error in the same manner as was done in the frequency 
weighted balanced reduction case.

Ĝ I( ∆r )G α∆a+ += ∆r ∆a ∞
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The advanced features of the µ-Analysis and Synthesis Toolbox (µ-Tools) are 
aimed at

• Analyzing the effect of uncertain models on achievable closed-loop 
performance

• Designing controllers to provide optimal worst-case performance in the face 
of the plant uncertainty

Hence, it is imperative that you understand

• How model uncertainty is represented in this framework

• The technical tools available to answer questions about the robustness of a 
given closed-loop system to certain forms of model uncertainty

In this chapter, we concentrate on these ideas, through concepts of linear 
fractional transformations and the structured singular value (µ). We begin in 
the next section with linear fractional transformations (LFTs) and their role in 
modeling uncertainty in matrices and systems.
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Representing Uncertainty
In this section, we describe the linear fractional representation of uncertainty 
that is used in µ-Tools. The basic idea in modeling an uncertain system is to 
separate what is known from what is unknown in a feedback-like connection, 
and bound the possible values of the unknown elements. This is a direct 
generalization of the notion of a state-space realization, where a linear 
dynamical system is written as a feedback interconnection of a constant matrix 
and a very simple dynamic element made up of a diagonal matrix of delays or 
integrators. This realization greatly facilitates manipulation and computation 
of linear systems, and linear fractional transformations provide the same 
capability for uncertain systems.

Linear Fractional Transformations (LFTs)
Linear Fractional Transformations (LFTs) are a powerful and flexible 
approach to represent uncertainty in matrices and systems. Consider first a 
complex matrix M, relating vectors r and v.

If r and v are partitioned into a top part and bottom part, then we can draw the 
relationship in more detail, explicitly showing the partitioned matrix M.

Suppose a matrix ∆ relates v2 to r2, as

The linear fractional transformation of M by ∆ interconnects these two 
elements, as follows,

M
� �v r v =Mr

�

�

�

�

M11 M12

M21 M22

v1

v2

r1

r2

v1 = M11r1 +M12r2

v2 = M21r1 +M22r2

�- -v2 r2 r2 = �v2



4 Modeling and Analysis of Uncertain Systems

4-4

Eliminate v2 and r2, leaving the relationship between r1 and v1

The notation FL indicates that the lower loop of M is closed with ∆. It is more 
traditional to write a block diagram with the arrows reversed, as in

This still represents the same formula, v1 = FL(M,∆)r1, and the choice of 
directions is a matter of taste. We prefer to write as much as is convenient of a 
block diagram with the arrows going right to left to be consistent with matrix 
and operator composition, which goes the same way. This simple convention 
reduces the confusion in going between block diagrams and equations, 
particularly when blocks have multiple inputs.

If the upper loop of M is closed with Ω, then we have

�

��

-

�

M11 M12

M21 M22

v1 r1

v1 M11 M12∆ I M22∆–( ) 1– M21+[ ]r1=

FL M ∆,( )r1=

FL M ∆,( )

M

�

--

-

�

r1 v1


-

�

��

M11 M12

M21 M22
v2 r2

v2 = FU (M;
) r2
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where

FU(M,Ω) := [M22 + M21Ω(I – M11Ω)–1M12]

Parametric Uncertainty
How do we use LFTs to represent an uncertain parameter? Suppose c is a 
parameter, and it is known to take on values

Write this as c = 2.4+0.4δc where δc ∈ [–1,1]. This is a linear fractional 
transformation. Indeed, check that

So, everywhere ← ← appears in a block diagram, simply replace it with

If the gain c–1 also appears, the LFT representation can still be used, because 
inverses of LFTs are LFTs (on the same δ). Note that

So, everywhere← ←  appears in a block diagram, replace it with

c FL
2.4 0.4
1 0

δc,
 
 
 

=

c

�c

��

-

�

2:4 0:4

1 0

1
2.4
-------- 1

1
6
---– δc

1 1
6
---–( )δc–

-------------------------+
 
 
 

=

c 1– 1
2.4 0.4δc+
----------------------------=

FL=
1

2.4
--------

1
6
---–

1
2.4
--------

1
6
---–

δc,
 
 
 
 

1
c
---
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The general case for inverses can be solved with the matrix inversion lemma. 
Specifically, given a matrix H, there exists matrices HLI and HUI such that for 
all ∆ and Ω

[FL(H,∆)]–1 = FL(HLI,∆), [FU(H,Ω)]–1 = FU(HUI,Ω)

In fact, with , the formulas for HLI and HUI are just

Consider a second order system, representing a single degree-of-freedom mass/
damper/spring system with uncertain elements

The coefficients are assumed to be uncertain, with a nominal value, and a 
range of possible variation

with –1 ≤ δm, δc, δk ≤ 1. Note that this represents 50% uncertainty in m, 30% 
uncertainty in c, 40% uncertainty in k. A block diagram is shown in Figure 4-1.

1
2.4
--------

1
2.4
--------

1
6
---–
1
6
---–

δc

H
H11 H12

H21 H22

=

HLI
H11

1– H– 11
1– H12

H21H11
1– H22 H21H11

1– H12–
=

HLI
H11 H12H22

1– H21– H12H22
1–

H– 22
1– H21 H22

1–
=

mx cx· kx+ + u=
..

m m 1 0.5δm+( ),= c c 1 0.3δc+( ),= k k 1 0.4δk+( )=
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Figure 4-1  Second Order Mass/Damper/Spring System

Define matrices

Now, replace → →, ← ←, and ← ←, respectively, with the block 
diagrams in Figure 4-2.

Figure 4-2:  Uncertain Elements as LFTs

Since we will eventually separate what is known (Mmi, Mc, MK, and 
integrators) from what is unknown (δm, δc, δk), redraw the original block 
diagram with the LFT representation of the uncertain elements, leaving out 

1

m

R R

k

c

- c

�

�

- - -

�@
@

@@I
-

�

6
�x _x xu y

Mc := c 0.3c
1 0

,Mmi := 
0.5– 1

m
-----

0.5– 1
m
-----

, Mk := k 0.4k
1 0

1
m
----- c k
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the δs, but label the signals which go to and from the δs. This is shown in 
Figure 4-3.

Figure 4-3:  Known Part of Uncertain System

Let Gmck be the four-input (wm, wc, wk, u), four-output (zm, zc, zk, y), two-state 
system shown in Figure 4-3 and depicted in Figure 4-4.

Figure 4-4:  Macro View of Known System

Note that Gmck only depends on , 0.5, 0.4, and 0.3 and the original 
differential equation which relates u to y. Hence, Gmck is known. Also, the 
uncertain behavior of the original system is characterized by an upper linear 
fractional transformation, FU, of Gmck with a diagonal uncertainty matrix as 
shown in Figure 4-5.

R R
- c

�

�

- - -

�@
@
@I

-

�

6

Mk� � wkzk

Mc� � wczc

Mmi

- -wm zm

�x _x xu y

Gmck
�

�

�

�

�

�

�

�zm
zc
zk
y

wm
wc
wk
u

m, c, k, 
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Figure 4-5:  Uncertain Mass/Damper/Spring System as LFT

The unknown matrix ∆, referred to as the perturbation, is structured. It has a 
block-diagonal structure, and affects the input/output relationship between u 
and y in an LFT (feedback) manner. During the course of this chapter, and 
beyond, many models of uncertainty will involve structured perturbation 
matrices and LFTs. Using sysic, we can easily compute Gmck.

mbar = 3; cbar = 1; kbar = 2; 
matmi = [-0.5 1/mbar ; -0.5 1/mbar]; 
matc = [cbar 0.3*cbar;1 0]; 
matk = [kbar .4*kbar;1 0]; 
int1 = nd2sys([1],[1 0]); 
int2 = nd2sys([1],[1 0]); 
systemnames = 'matmi matc matk int1 int2'; 
sysoutname = 'Gmck'; 
inputvar = '[wm;wc;wk;u]'; 
input_to_matmi = '[wm;u-matc(1)-matk(1)]'; 
input_to_matc = '[int1;wc]'; 
input_to_matk = '[int2;wk]'; 
input_to_int1 = '[matmi(1)]'; 
input_to_int2 = '[int1]'; 
outputvar = '[matmi(1);matc(2);matk(2);int2]'; 
sysic;

Gmck

�m 0 0

0 �c 0

0 0 �k

�y

-

�

� u

�

y FU= Gmck

δm 0 0

0 δc 0

0 0 δk

,

∆ 
 
 
 
 
 
 

u

        
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µ-Tools Commands for LFTs
The lower and upper LFT formulas are implemented in µ-Tools with the 
command starp. The name starp comes from the star product operation 
defined and developed in [Red1]. The star product is a generalization of the 
LFT, and includes both the lower and upper LFTs as special cases.

Suppose that T and B are two matrices (CONSTANT, VARYING or SYSTEM) 
partitioned as below.

such that the matrix product T22B11is well defined, and in fact, square.

If I – T22B11 is invertible, define the star product of T and B to be

where FL and FU are defined as earlier,

In a block diagram, the star product appears as

T
T11 T12

T21 T22

= , B
B11 B12

B21 B22

=

S T B,( ) := 
FL T B11,( ) T12 I B11T22–( ) 1– B12

B21 I T22B11–( ) 1– T21 FU B T22,( )

FL T B11,( ) T11 T12B11 I T22B11–( ) 1– T21+=

FU B T22,( ) B22 B21T22 I B11T22–( ) 1– B12+=

B

T

S

n1

n2
�

�

�
�
�
��

X
X

X
XX

�

�

�

�
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and would be computed

S = starp(T,B,n1,n2)

Here n1 is the row dimension of [T21 T22] (and the column dimension of ), 

which is the number of signals which are fed from T to B. Similarly, n2 is the 

row dimension of [B11 B12] (and the column dimension of ), which is the 

number of signals which are fed from B to T. The remaining inputs and outputs 
appear in the output matrix S in the same order as they are in T and B. If the 
dimension arguments n1 and n2 are omitted, then the following takes place:

• n1 = min([ynum(T) unum(B)])
• n2 = min([unum(T) ynum(B)])

so all possible loop closures are made. Hence, LFTs (which are special cases of 
star products) are easily computed using starp without dimension arguments.

M = crandn(10,8); 
Delta = crandn(3,4); 
Omega = crandn(6,3); 
flmd = starp(M,Delta); 
fumo = starp(Omega,M);

It is possible to form the star product of two dynamical systems, and it is 
possible to form the star product of their frequency responses. Hence, starp 
works with all µ-Tools data types.

We can illustrate this by considering the frequency response of the uncertain 
mass/damper/spring system considered in the previous section entitled 
“Parametric Uncertainty”. Compute the frequency response of the four-input, 
four-output system Gmck. Then, the frequency response of the uncertain system 
is simply the linear fractional transformation of the frequency response of Gmck 
with the perturbation matrix (δm, δc, δk).

B11

B21

T12

T22
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Gmck_g = frsp(Gmck,logspace(-1,1,100)); 
delnom = diag([0;0;0]); 
rifd(spoles(starp(delnom,Gmck))) 
delnpn = diag([-1;1;-1]); 
rifd(spoles(starp(delnpn,Gmck))) 
delpnp = diag([1;-1;1]); 
rifd(spoles(starp(delpnp,Gmck))) 
vplot('bode',starp(delnom,Gmck_g),'-',...

starp(delnpn,Gmck_g),'.-',starp(delpnp,Gmck_g),'--')
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Interconnections of LFTs 
By now, you probably have noticed an extremely important property of LFTs 
— typical algebraic operations such as frequency response, cascade 
connections, parallel connections, and feedback connections preserve the LFT 
structure. This means that normal interconnections of LFTs are still in the 
form of an LFT. Hence, the LFT is an excellent choice for a general hierarchical 
representation of uncertainty. For illustrative purposes, we consider a few 
additional examples in this section.

Consider a cascade connection of FL(M,∆) with FU(G,Ω), so that y = 
FL(M,∆)FU(G,Ω)u. This is shown below.

Draw a box around M and G, isolating them from ∆ and Ω, calling the boxed 
items Q.

Q is made up of the elements of M and G, and relates the variables (u, w∆, wΩ) 
to (y, z∆, zΩ)
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From the diagram, Q is easily calculated as

Since is the matrix that relates  , it is clear that the cascade 

connection of FL(M,∆) and FU(G,Ω) is yet another LFT, namely

as shown below

Similar manipulations can be carried out for parallel connections, as well as 
feedback connections, and arbitrary combinations of these. For instance, a 
complicated feedback connection with three LFTs

y
z∆

zΩ

M11G22 M12 M11G21

M21G22 M22 M21G21

G12 0 G11

u
w∆

wΩ

=

Q

∆ 0
0 Ω

z∆

zΩ

w∆

wΩ
→

FL M ∆,( )FU G Ω,( ) FL Q ∆ 0
0 Ω

,
 
 
 

=

Q

�y � u

-�

�

-



�

G1

G3

G2

�1 �2

�3

� �

�

��

- -

-

� �

- -

-

�

e1 d1

u1

d3
y3
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can be drawn as a single LFT on the diagonal matrix containing the three 
individual perturbations, 

Here, P depends only on G1, G2, G3, and the interconnection diagram and is 
easy to calculate with the interconnection program sysic. For instance, if every 
line in the diagram represents a scalar signal, then correct sysic commands to 
create P are as follows:

G1 = sysrand(8,3,4); 
G2 = sysrand(7,2,2); 
G3 = sysrand(6,3,3); 
systemnames = 'G1 G2 G3'; 
sysoutname = 'P'; 
inputvar = '[w1;w2;w3;d1;d3;u]'; 
input_to_G1 = '[d1;G2(1);u1;w1]'; 
input_to_G2 = '[G3(1);w2]'; 
input_to_G3 = '[d3;G1(2);w3]'; 
outputvar = '[G1(3);G2(2);G3(3);G1(1);G3(2)]'; 
cleanupsysic = 'yes'; 
sysic

Note  The uncertainty matrix affecting P is structured, with a block-diagonal 
structure. Many elements of the uncertainty matrix are known to be zero. 
This is an extremely important observation. In other words, general 
uncertainty at component level becomes structured uncertainty at the 
interconnection level.
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Parameter Uncertainty in Transfer Functions
Suppose that we have a process with an uncertain gain, first-order lag with 
uncertain time constant, and uncertain delay (modeled with a Pade 
approximation). The transfer function for the process is

(4-1)

Assume that each of the terms K, γ, and τ is uncertain, with K ∈ [1 3], γ ∈ [0.05 
0.15], and τ ∈ [1 2]. Further assume that K and γ are linearly related, so that 
as K takes on values from 1 → 3, γ simultaneously takes on values from 0.05 → 
0.15. Represent these variations with two uncertainties, δ1 and δ2, with

K = 2 + δ1, γ = 0.1 + 0.05δ1, τ = 1.5 + 0.5δ2

where –1 ≤ δ1, δ2 ≤ 1.

A block diagram of is

Similarly, a block diagram of is

Use upper-loop LFTs to model K, γ–1 and τ–1, define matrices

so that K = FU(MK,δ1), γ–1 = FU(MγI,δ1), τ–1 = FU(MτI,δ2).

y s( ) K   1
τs 1+
--------------- γs 1+–

γs 1+
------------------u s( )=

gain
lag Pade

{ { {
γs– 1+

γs 1+
-------------------

1
τs 1+
---------------

Mk := 0 1
1 2

,   MγI := 
1
2
---– 10

1
2
---– 10

,   MτI := 
1
3
---–

2
3
---

1
3
---–

2
3
---
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The first-order Pade system is of the form FU(GP,δ1), and the first-order lag is 
of the form FU(GL,δ2), where GP and GL are known, two-input, two-output, 
one-state systems

GP is shown in detail in Figure 4-6 and can be built easily using sysic.

Figure 4-6:  LFT System Gp for Uncertain Pade

For instance

mgammai = [-0.5 10; -0.5 10]; 
int = nd2sys([1],[1 0]); 
systemnames = 'mgammai int'; 
sysoutname = 'GP'; 
inputvar = '[w_gamma;u1]'; 
input_to_mgammai = '[w_gamma;2*u1-int]'; 
input_to_int = '[mgammai(2)]'; 
outputvar = '[mgammai(1);int-u1]'; 
sysic;
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Similar calculations are necessary for GL, whose internal structure is shown in 
Figure 4-7.

mtaui = [-1/3 2/3; -1/3 2/3]; 
int = nd2sys([1],[1 0]); 
systemnames = 'mtaui int'; 
sysoutname = 'GL'; 
inputvar = '[w_tau;u2]'; 
input_to_mtaui = '[w_tau;u2-int]'; 
input_to_int = '[mtaui(2)]'; 
outputvar = '[mtaui(1);int]'; 
sysic; 

Figure 4-7:  LFT System GL for Uncertain Lag

The uncertain K is directly represented using FU(MK,δ1). The known part of 
the uncertain gain/lag/Pade system is simply a four-input, four-output, 
two-state system Gproc shown in Figure 4-8 with internal structure shown in 
Figure 4-9.

Figure 4-8:  Known Part of Uncertain Gain/Lag/Pade

Figure 4-9:  Cascade of Pade, Lag, and Gain LFTs
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The uncertain system’s behavior, equation Figure 4-1, is an LFT,

The perturbation δ1 is repeated twice, due to the coupled variation in K and γ.

The SYSTEM matrix Gproc can be constructed with sysic as follows:

MK = [0 1;1 2]; 
systemnames = 'GP GL MK'; 
sysoutname = 'Gproc'; 
inputvar = '[w_gamma;w_k;w_tau;u]'; 
input_to_GP = '[w_gamma;u]'; 
input_to_GL = '[w_tau;GP(2)]'; 
input_to_MK = '[w_k;GL(2)]'; 
outputvar = '[GP(1);MK(1);GL(1);MK(2)]'; 
sysic;

We can do some time-domain simulations to verify that this model is correct. 
Recall that δ1 = –1 translates into K = 1, γ = 0.05 while δ1 = 1 means K = 3, 
γ = 0.15. Also, δ2 = –1 corresponds to τ = 1, and δ2 = 1 corresponds to τ = 2.

% pertnom ---> nominal values 
pertnom = diag([0,0,0]); 
% pert1 ---> low gain, short delay, slow lag 
pert1 = diag([-1,-1,-1]); 
% pert2 ---> low gain, short delay, fast lag 
pert2 = diag([-1,-1,1]); 
% pert3 ---> high gain, long delay, slow lag 
pert3 = diag([1,1,-1]); 
% pert4 ---> high gain, long delay, fast lag 
pert4 = diag([1,1,1]); 
tfinal = 4; 
sysnom = starp(pertnom,Gproc); 
ynom = trsp(sysnom,1,tfinal); 
y1 = trsp(starp(pert1,Gproc),1,tfinal); 
y2 = trsp(starp(pert2,Gproc),1,tfinal); 
y3 = trsp(starp(pert3,Gproc),1,tfinal); 
y4 = trsp(starp(pert4,Gproc),1,tfinal);
vplot(ynom,'-',y1,':',y2,'-.',y3'--',y4,'+')

y FU Gproc,
δ1I2 0

0 δ2 
 
 
 

u=
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Linear State-Space Uncertainty
For general parametric uncertainty in state-space or transfer function models, 
the methods outlined in the previous section are used. In the special case of 
linear uncertainty in a state-space model, the uncertainty description can be 
built up even more easily. Consider an uncertain state-space model,

(4-2)

where for each i = 1,2,. . .,m

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

0

0.5
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t
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x· t( )
y t( )

A0 δiAi

i 1=

m

∑+ B0 δiBi

i 1=

m

∑+

C0 δiCi

i 1=

m

∑+ D0 δiDi

i 1=

m

∑+

x t( )
u t( )

=
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C0 D0
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Let

and factor each matrix (using svd, for instance) as

where

Now, define a linear system Gss, with extra inputs and outputs via the state 
equations as shown in Figure 4-10.

Figure 4-10:  Linear System: Gss

The uncertain system in equation Figure 4-2 is represented as an LFT around 
Gss, namely

y = FL(Gss,∆)u

where ∆ maps z → w, and has the structure given as
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∆ = {diag[δ1 ,. . .,δm ] : δi ∈ R}

This approach, developed in [MorM], has its roots in the Gilbert realization, 
which is discussed in [Kai].

As an example, consider a two-state, single-input, single-output system with a 
single parameter dependence.

The matrix multiplying δ has rank 1, and factors simply as

x·

u

z1

zm

A0 B0 E1 … Em

C0 D0 F1 … Fm

G1 H1 0 … 0

Gm Hm 0 … 0

x

u

w1

wm

=

… …… … … …...

Ir1
Irm

A δ( ) B δ( )
C δ( ) D δ( )

 := 
0 1 0

16– 0.16– 1
16 0 0

δ
0 0 0

6.4 0 0
0 0 0

+

0 0 0
6.4 0 0

0 0 0

0
6.4

0
1 0 0=
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so the state equations for Gss are

Unmodeled Dynamics
Models of uncertainty are not limited to parametric uncertainty. Often, a low 
order, nominal model, which suitably describes the low-mid frequency range 
behavior of the plant is available, but the high-frequency plant behavior is 
uncertain. In this situation, even the dynamic order of the actual plant is not 
known, and something richer than parametric uncertainty is needed to 
represent this uncertainty. One common approach for this type of uncertainty 
is to use a multiplicative uncertainty model. Roughly, this allows you to specify 
a frequency-dependent percentage uncertainty in the actual plant behavior.

In order to specify the uncertainty set, we need to choose two things:

• A nominal model, G(s)

• A multiplicative uncertainty weighting function, Wu(s)

Given these, the precise definition of the multiplicative uncertainty set is

with the additional restriction that the number of right-half plane (RHP) poles 
of  be equal to the number of right-half plane poles of G. At each frequency, 
|Wu(jω)| represents the maximum potential percentage difference between all 
of the plants represented by M(G,Wu) and the nominal plant model G. In that 
sense, M(G,Wu) represents a ball of possible plants, centered at G. On a 
Nyquist plot, a disk of radius |Wu(jω)G(jω)|, centered at G(jω) is the set of 
possible values that  can take on, due to the uncertainty description.

x·1

x·2

u

z1

0 1 0 0
16– .16– 1 6.4
16 0 0 0
1 0 0 0

x1

x2

u

w1

=

M G Wu,( ) := G̃ : G̃ jω( ) G jω( )–
G jω( )

-------------------------------------- Wu jω( )≤
 
 
 

G̃

G̃ jω( )
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As an example, suppose that the nominal model of the plant is

and the uncertainty in the plant model is parametrized by the multiplicative 
uncertainty, with uncertainty weight

G = nd2sys([1],[1 -1]); 
Wu = nd2sys([0.5 1],[0.03125 1],0.25); 
omega = logspace(-2,2,80); 
vplot('liv,lm',frsp(G,omega),frsp(wu,omega))

G := 1
s 1–
------------

Wu := 
1
4
---

1
2
---s 1+( )

1
32
------s 1+

----------------------
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It is instructive to consider sets of models that are similar to the nominal model 
G, and see to what extent the sets are contained in M(G,Wu). Consider the 
following problem. Determine the smallest  such that

The easiest approach using µ-Tools is just to compute, and plot

for various values of β, and determine the lower limit  by comparing the plot’s 
magnitude relative to 1. Using the command ex_unc, it is easy to carry out this 
procedure. For instance,

beta = 1; 
Gtilde = mmult(nd2sys(beta,[1 beta]),G) 
ex_unc(G,Gtilde,wu,omega); % above 1 
beta = 10; 
Gtilde = mmult(nd2sys(beta,[1 beta]),G)
ex_unc(G,Gtilde,wu,omega); % below 1

file: ex_unc.m 
function ex_unc(G,Gtilde,Wu,omega) 
Gg = frsp(G,omega); 
Gtildeg = frsp(Gtilde,omega); 
Wug = frsp(Wu,omega); 
percdiff = vabs(vrdiv(msub(Gtildeg,Gg),mmult(Gg,Wug)));
vplot('liv,m',percdiff,1);

β

G β
s β+
------------ : β β>

 
 
 

M G Wu,( )⊂

G̃ jω( ) G jω( )–
G jω( )Wu jω( )
--------------------------------------

β
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A few more trials reveal  As an exercise, carry out similar calculations 
on the following examples:

• Define  and as the smallest and largest numbers such that

Exercise: Using µ-Tools, show that  and .

• Define as the largest number such that

Exercise: Using µ-Tools, show .

• Define  and  as the smallest and largest numbers such that

Exercise: Using µ-Tools, show that  and .

• Define as the largest integer such that

Exercise: Using µ-Tools, show .

We return to this example, and these specific extreme plants later in the 
“Analysis of Controllers for an Unstable System” section in Chapter 7.

Now, by defining , each can be drawn as in Figure 4-11.

β 6.1.≈

δ 0> δ 0>

1 δ+
s 1– δ–
-------------------- :  δ δ δ≤ ≤

 
 
 

M G Wu,( )⊂

δ 0.33≈ δ 0.425≈

τ 0>

G τs– 1+
τs 1+

------------------- :  τ τ≤
 
 
 

M G Wu,( )⊂

τ 0.07≈

r 0> r 0>

G 702

s2 2ξ70s 702
+ +

-------------------------------------------- :  ξ ξ ξ≤ ≤
 
 
 

M G Wu,( )⊂

ξ 0.145≈ ξ 5.7≈

m 0>

G 50
s 50+
--------------- 

  m
 :  m 0,1,…,m=

 
 
 

M G Wu,( )⊂

m 6=

∆ := G̃ G–
GWu
--------------- G̃
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Figure 4-11:  Multiplicative Uncertainty

In order to satisfy the constraint , ∆ must be a transfer function 
that satisfies , and

#RHP poles [G(1 + Wu∆)] = #RHP poles [G]

Note that ∆ itself may be unstable — reconsider the previous example 
involving the parameter δ. There, the unstable pole of changes location. It is 
easy to verify that

(4-3)

gives (by simple algebraic manipulation)

as desired. Moreover, the ∆'s that actually yield

G(1 + Wu∆) ∈ M(G,Wu)

are those in equation (4-3) which also satisfy

-u 6

Wu

-
�

?- G - yf
+

+

Behavior of
plants inM(G;Wu)

G̃ M G Wu,( )∈
max ∆ jω( ) 1≤

ω

G̃

∆
1

32
------s 1+( )δs

1
4
---

1
2
---s 1+( ) s 1– δ–( )

-------------------------------------------------=:

G 1 Wu∆+( ) 1
s 1–
------------ 1

1
4
---

1
2
---s 1+( )

1
32
------s 1+( )

----------------------∆+
 
 
 

=

s 1–( ) 1 δ+( )
s 1–( ) s 1– δ–( )

-------------------------------------------=

1 δ+
s 1– δ–
--------------------=

max ∆ jω( ) 1≤
ω R∈
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It is important to understand that in this situation, ∆, G, and Wu are not viewed 
as three separate physical devices which are interconnected to form . If they 
were, then the interconnection in Figure 4-11 would actually have two 
unstable modes, at (1) and (1 + δ), but the mode at 1 would be uncontrollable 
from u. Obviously, no controller could internally stabilize the system. Instead, 
∆, G, and Wu are just combined to yield a useful manner (through the definition 
of M(G,Wu)) to parametrize a set of plants that are similar (in a precise way) to 
G.

As usual, we represent the uncertain plant set M(G,Wu) as an LFT by 
separating the known elements (G and Wu) from the unknown elements (∆) as 
shown in the following figure.

The uncertain component is now represented as y = FU(Hmult,∆)u, with Hmult 
having the value

Hmult is easily calculated using sysic or simpler manipulations.

Hmult = madd(mmult([1;0],wu,[0 1]),mmult([0;1],G,[1 1])); 
% or 
systemnames = 'wu G'; 
sysoutname = 'Hmult'; 
inputvar = '[w;u]'; 
input_to_wu = '[u]'; 
input_to_G = '[w+u]'; 
outputvar = '[wu;G]'; 
sysic

G̃

--

6
?

-u 6

Wu

z

- �

?

w

- G - yf
+

+

Hmult

Known, 2-input,
2-output, linear
system

z
y

0 Wu

G G

w
u

=

Hmult
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In summary, the multiplicative uncertainty model captures a wide variety of 
plant variations, and represents not only parameter variations, but also 
unmodeled dynamics. In terms of Nyquist plots, it represents disk-uncertainty 
at each frequency. It is a coarse, yet simple, approach to putting uncertainty 
into models.

Additive (as opposed to multiplicative) uncertainty may also be used. Given a 
nominal model G and an additive uncertainty weighting function Wu, the 
additive uncertainty set is

with the additional restriction that the number of right-half-plane poles of be 
equal to the number of right-half-plane poles of G. The block diagram to 
represent this form of uncertainty is shown in Figure 4-12. It can be expressed 
as an LFT in the usual manner.

Figure 4-12:  Additive Uncertainty

A G Wu,( ) := G̃ : G̃ jω( ) G jω( )– Wu jω( )≤{ }  

G̃

G

Wu �

-

- -

?f- - yu

Behavior of
plants in A(G;Wu)
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Mixed Uncertainty
Uncertainty may be mixed, including both parametric uncertainty and 
unmodeled dynamics. For an example, take the uncertain second order system 
from “Parametric Uncertainty” section, with parametric uncertainty in the 
parameters m, c, and k and additional high-frequency unmodeled dynamics 
using the multiplicative uncertainty model. The block diagram is

The possible behavior is represented as an LFT

y = FU(Hmix, ∆)u

where the perturbation matrix ∆ has the structure

∆ = diag{δm,δc,δk,δ(s)}

and Hmix is the five-input, five-output system defined by the following sysic 
commands.

systemnames = 'Gmck wu'; 
sysoutname = 'Hmix'; 
inputvar = '[parmpertin{3} ; unmodpertin ; u]'; 
input_to_Gmck = '[parmpertin; unmodpertin + u]'; 
input_to_wu = '[u]'; 
outputvar = '[Gmck(1:3) ; wu ; Gmck(4)]'; 
sysic

Gmck

�m 0 0

0 �c 0

0 0 �k

�y

6

-

� u� 6

Wu

6

��(s)

?

?

c

?
� Hmix
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Analyzing the Effect of LFT Uncertainty
Given uncertain models, the structured singular value (µ) can be used to 
analyze the robustness of the system to the structured uncertainty that enters 
in the feedback form.

Using µ to Analyze Robust Stability
At this point, we have learned how to represent uncertain systems as LFTs on 
unknown, structured uncertainty matrices. However, there has been no 
discussion on how to analyze the robustness of these uncertain systems. This 
is done with the structured singular value, µ. In this section, we perform an 
analysis using the command mu, which computes upper and lower bounds for µ. 
We concentrate on the mechanics of using the command, and the conclusions 
that you reach with a µ-analysis.

Every µ-analysis consists of the following steps:

1 Recast (using the interconnection program sysic or Simulink®) the problem 
into the familiar feedback loop diagram of Figure 4-13, where M is a known 
linear system, and ∆ is a structured perturbation.

Figure 4-13:  General Diagram for Robust Stability Analysis

2 Calculate a frequency response of M.

3 Describe the structure of the perturbations ∆.

4 Run the command mu on the frequency response.

5 Plot the bounds obtained from the µ calculation.

M

�
-

�
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Usually M arises by connecting an uncertain system with a feedback controller. 
Consider the mass/damper/spring system in the “Mixed Uncertainty” section, 
with both parametric uncertainty and unmodeled dynamics. Suppose that a 
feedback controller K has been designed to improve the damping, by feedback 
from y to u, namely u = Ky. Then, the uncertain closed-loop system appears in 
Figure 4-14.

Figure 4-14:  Uncertain Closed-Loop System

By grouping Hmix and K together, namely, M := FL(Hmix,K), Figure 4-15 shows 
the transformation of Figure 4-14 to Figure 4-13.

Figure 4-15:  Transforming to General Form

�

Hmix

K

-

�

-

�
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With M constructed, next we must clearly describe the structure of the 
uncertain element ∆. The structure of the perturbation matrices must be 
passed to the mu command. There are three different aspects to consider about 
each block of the perturbation matrices when specifying the uncertainty 
structure:

• The type (real parameter vs. unmodeled dynamics) of the perturbation

• The dimension of the perturbation

• The number of independent locations that the particular uncertainty occurs 
(that is, does it affect the system in two or more places, as δ1 does in the Gain 
and Pade parts of the example from the “Parametric Uncertainty” section?)

As for the software, this uncertainty structure information is stored as an 
n × 2 array (called the block structure array) where n is the number of different 
perturbation elements in the uncertainty matrix. Each row of this block 
structure array has information to describe the uncertain block. In µ-Tools, 
these conventions are:

• A scalar real parameter is denoted [-1 1] (or [-1 0]).

• A repeated (ƒ times) real parameter is denoted [-f 0].

• A 1 × 1 (ie., scalar) unmodeled dynamics perturbation (later referred to as 
complex in the “Structured Singular Value Theory” section), is denoted [1 1] 
or ([1 0]).

• An r × c (ie., full) unmodeled dynamics block is denoted [r c] See the 
“HIMAT Robust Performance Design Example” section in Chapter 7 for an 
example.

Hence, in the“Parametric Uncertainty” section, the uncertainty set for Gmck is 
denoted

deltaset = [-1 1;-1 1;-1 1]; % m/c/k

The uncertainty set for Gproc in the “Parameter Uncertainty in Transfer 
Functions” section is denoted

deltaset = [-2 0;-1 0]; % Gain/Pade/Lag

The mixed uncertainty example in the “Mixed Uncertainty” section is 
represented as

deltaset = [-1 1;-1 1;-1 1;1 1]; % m/c/k/unmodeled
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Note that the ordering of the uncertainty elements is (and must be) consistent 
with the ordering of the input/output channels of the known systems (Gmck, 
Gproc, and Hmix).

As a notational convention, once the uncertainty structure has been defined for 
any given problem, we will use the symbol ∆ to represent all perturbation 
matrices with the appropriate structure. For example, in the mixed 
uncertainty example of the “Mixed Uncertainty” section, we have

Now that the uncertainty structure has been represented, we can compute the 
size of perturbations to which the system is robustly stable. We need to 
calculate a frequency response of M, and then compute the structured singular 
value (µ) of M with respect to the uncertainty set ∆. At each frequency, the 
matrix M(jω) is passed to the µ algorithm, and bounds for µ(M(jω)) are 
computed, giving upper and lower bound functions of frequency, which are 
plotted. The notation for µ will be µ∆(M(jω)), to emphasize the dependency of 
the function not only on M, but also on the uncertainty set ∆.

Suppose the peak (across frequency ω) of the µ∆(M(jω)) is β. This means that 
for all perturbation matrices ∆ with the appropriate structure (ie., any ∆ ∈ ∆), 
and satisfying , the perturbed system is stable. Moreover, 
there is a particular perturbation matrix ∆ ∈ ∆ satisfying  
that causes instability. Hence, we think of

as a stability margin with respect to the structured uncertainty set affecting M.

As mentioned, the software does not compute µ exactly, but bounds it from 
above and below by several optimization steps. Hence, the conclusions must be 
carefully stated in terms of upper and lower bounds. Let βu be the peak (across 

∆ := 

δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4

 : δ1 R∈ , δ2 R∈ , δ3 R∈ , δ4 s( )

 
 
 
 
 
 
 
 
 

max σ ∆ jω( )[ ] 1
β
---<ω

max σ ∆ jω( )[ ] 1
β
---<

ω

1
max µ∆ M jω( )( )
---------------------------------------------
ω
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frequency) of the upper bound for µ, and βl be the peak of the lower bound for 
µ. Then:

• For all perturbation matrices ∆ ∈ ∆ satisfying

the perturbed system is stable.

• There is a particular perturbation matrix ∆ ∈ ∆ satisfying

that causes instability.

Hence the gap between the upper and lower bounds translates into gaps 
between the conclusions guaranteed robust stability and not robustly stable.

The destabilizing perturbation matrix (of size ) can be constructed from the 
µ calculation using the command dypert.

It is instructive to carry out these steps on a simple example. Here, we analyze 
the robust stability of a simple single-loop feedback regulation system with two 
uncertainties. The plant is a lightly-damped, nominal two-state system with 
uncertainty in the (2,1) entry of the A matrix (the frequency-squared 
coefficient) and unmodeled dynamics (in the form of multiplicative 
uncertainty) at the control input. The overall block diagram of the uncertain 
closed-loop system is shown in Figure 4-16. The signals d, n, and e will be used 
in the next section when robust performance is discussed.

The two-state system with uncertainty in the A matrix is represented as an 
upper linear fractional transformation about a two-input, two-output, 
two-state system H, whose realization is

max σ ∆ jω( )[ ] < 1
βu
------

ω

max σ ∆ jω( )[ ] = 1
βl
-----

ω

1
βl
-----

AH BH

CH DH

 := 

0 1 0 0
16– 0.16– 1 1

6.4 0 0 0
16 0 0 0
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Figure 4-16:  Robust Stability/Performance Example

The resulting second order system takes the form

If we assume that δ1 is unknown, but satisfies |δ1| ≤ 1, then we interpret the 
second order system to have 40% uncertainty in the denominator entry of the 
natural frequency-squared coefficient.

The plant is also assumed to have unmodeled dynamics at the input. This could 
arise from an unmodeled, or unreliable, actuator, for instance. The uncertainty 
is assumed to be about 20% at low frequency, rising to 100% at 6 radians/
second. We model it using the multiplicative uncertainty model, using a 
first-order weight

For this example, the controller is chosen as

Let M(s) in Figure 4-17 denote the closed-loop transfer function matrix from 
Figure 4-16, after omitting δ1 and δ2. The dimensions of M are six states, four 
inputs and three outputs.

1

5
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+
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Uncertain Plant

FU H δ1,( ) 16

s2 0.16s 16 1 0.4δ1+( )+ +
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7s 8.5+
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K 12.56– s2 17.32s 67.28+ +

s3 20.37s2 136.74s 179.46+ + +
-------------------------------------------------------------------------------------.=
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Figure 4-17:  Closed-Loop Interconnection

In the robust stability analysis, we are only concerned about the stability of the 
perturbed closed-loop system, and in that case, only the transfer function that

the perturbation matrix sees is important. For notational 

purposes, drop the s from M(s), and partition M into

(4-4)

where M11 is 2 × 2, and M22 is 1 × 2. The perturbation matrix ∆ enters the 
problem as feedback around M11, as shown in Figure 4-18.

Figure 4-18:  Example: Robust Stability

Hence, for robust stability calculations we only need the submatrix M11 (for 
robust performance calculations, presented in the “Robust Performance” 
section, we will need the entire matrix M).

The computational steps for analysis are given below:

1 Construct M and check dimensions.

rsexamp; % creates data 
minfo(M)

M (s)
�e

�z2

�z1

� n

� d

� w2

� w1

∆ := 
δ1 0

0 δ2 s( )

M
M11 M12

M21 M22

=

M11

�
-

�
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2 Calculate frequency response, and select the first two input and output 
channels for the robust stability test.

omega = logspace(-2,2,200); 
M_g = frsp(M,omega); 
M11_g = sel(M_g,1:2,1:2);

3 Create matrix to describe the uncertainty structure (1 real parameter, 1 
unmodeled dynamics uncertainty).

deltaset = [-1 0;1 1];

4 Compute µ∆(M11(jω)) using mu.

[mubnds,dvec,sens,pvec,gvec] = mu(M11_g,deltaset);

5 Plot the bounds.

vplot('liv,m',mubnds) 
pkvnorm(sel(mubnds,1,1)) 
[pklow,omegapklow] = pkvnorm(sel(mubnds,1,2))

The peak is about 0.89 (upper and lower bounds are very close in this example) 
and occurs at ω = 5.4 radians/second. Hence, stability is guaranteed for all 
perturbations with appropriate structure, and .
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6 Construct the smallest destabilizing perturbation. Check that the 
perturbation has the appropriate structure and that the size of the 
perturbation is equal to the reciprocal of the peak of the lower bound.

pert=dypert(pvec,deltaset,mubnds); 
minfo(pert) 
seesys(pert) 
spoles(pert) 
hinfnorm(sel(pert,1,1)) 
hinfnorm(sel(pert,2,1)) 
hinfnorm(sel(pert,1,2)) 
hinfnorm(sel(pert,2,2)) 
hinfnorm(pert)

7 Verify that the perturbed system is indeed unstable. Note the location of the 
perturbed closed-right-half-plane pole and its relationship with the peak of 
the µ-lower bound plot.

pertM = starp(pert,M); 
spoles(pertM)
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Using µ to Analyze Robust Performance
We have seen how µ can be used to analyze the robust stability of a LFT. In this 
section, we use µ to determine the robust performance of a LFT under 
perturbation.

Assume that the problem has been manipulated (using the program sysic or 
Simulink) into the familiar feedback loop diagram of Figure 4-19, where M is a 
known linear system, ∆ is a structured perturbation from a problem-dependent 
allowable uncertainty set ∆, and d and e are the generalized disturbance and 
error that characterizes the performance objective.

The transformation from a system block diagram to the generic diagram in 
Figure 4-19 is analogous to the transformation described in this section and 
Figure 4-15, except that exogenous signals (disturbances and errors) are 
simply kept in the diagram.

Figure 4-19:  Robust Performance Formulation

Recall from Chapter 3 that the performance of MIMO control systems is 
characterized using H∞ norms. Specifically, we assume that good performance 
is equivalent to

where T is some weighted, closed-loop transfer function matrix. In the case of 
robust performance of uncertain systems, we’ll take T to be the uncertain 
transfer function from d → e, so T = FU(M,∆).

Clearly, the transfer function from d → e is a function of ∆, through the 
elements of M, and the linear fractional formula for FU. How large can the 
transfer function FU(M,∆) get as ∆ takes on its allowed values? In view of this 
question, the robust performance condition is defined as The LFT in Figure 

M

�
-

�

��e d

ω R∈
T ∞ := max σ T jω( )( ) 1≤
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4-19 is said to achieve robust performance if it is stable for all perturbations ∆ 
∈ ∆ satisfying , and moreover, if ||FU(M,∆)||∞ ≤ 1 for all 
such perturbations.

How can µ be used to assess robust performance? The main idea is very simple 
— you must first relate the size of a transfer function to a robust stability test. 
Suppose that T is a given stable system with input dimension nd and output 
dimension ne. By the Nyquist and small-gain theorem, we know that ||T||∞ ≤ 1 
if and only if the feedback loop in Figure 4-20 is stable for every stable ∆F(s) (of 
dimension nd × ne) satisfying ||∆F||∞ < 1.

Hence, a transfer function T is small (||T||∞ ≤ β) if and only if T can tolerate all 
possible stable feedback perturbations ∆F (with ||∆F||∞ < ) without leading to 
instability. In other words, the size of a transfer function could be determined 
using a robust stability test. This ultimately allows us to pose the robust 
performance question as a robust stability question.

Figure 4-20:  Performance as Robustness

Consider our situation, where T = FU(M,∆). Following the argument presented, 
we have that ||FU(M,∆)||∞ ≤ 1 for all perturbations ∆ ∈ ∆ satisfying 

 if and only if the LFT shown in Figure 4-21 is stable for all 
∆ ∈ ∆ and all stable ∆F satisfying

max σ ∆ jω( )[ ] < 1 
ω

1
β
---

T

�F

Stable for all k�Fk1 < 1

-

�

, T� �

1
� 1

max σ ∆ jω( )[ ] < 1 
ω

max σ ∆ jω( )( ) < 1   and    
ω

max σ ∆F jω( )( ) < 1. 
ω



4 Modeling and Analysis of Uncertain Systems

4-42

Figure 4-21:  Robust Stability with Augmented Uncertainty

But this is exactly a robust stability problem for M, subjected to perturbation 
matrices of the form

Hence, we use robust stability techniques — on a larger problem, computing 
— to determine bounds on robust performance for our original 

problem. Specifically, we use an additional (fictitious) uncertainty element, 
and determine the robust stability of the extended system, and finally make 
conclusions about the robust performance of the original uncertain system, 
FU(M,∆).

Important Robust ||⋅||∞ Performance is characterized by introducing a 
fictitious uncertainty block across the disturbance/error channels and 
carrying out a Robust Stability Analysis.

In summary, each robust performance µ-analysis consists of the following 
steps:

1 Recast (using the interconnection program sysic or Simulink) the problem 
into the familiar feedback loop diagram of Figure 4-19, where M is a known 
linear system, and ∆ is a structured perturbation, and d and e are the 
generalized disturbance and error that characterizes the performance 
objective.

�

M

�F
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∆P
∆ 0
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=

µ∆P
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2 Calculate a frequency response of M.

3 Describe the structure of the perturbation set ∆.

4 Use the dimensions of the disturbance/error channels to define the 
fictitiously uncertainty block, and augment this with the actual uncertainty 
structure of ∆ to obtain an extended uncertainty set ∆P.

5 Compute µ∆p(M(j,ω)) on the frequency response of M, using the augmented 
uncertainty set ∆P (which contains the fictitious full, transfer function 
block).

6 Plot the bounds obtained from the µ calculation.

Suppose the peak of the µ-plot is β. This means that for all perturbation 
matrices ∆ ∈ ∆ satisfying , the perturbed system is stable 
and ||FU(M,∆)||∞ ≤ β. Moreover, there is a particular perturbation ∆ ∈ ∆ 
satisfying that causes either ||FU(M,∆)||∞ = β, or instability.

However, the software does not compute µ exactly, but upper and lower 
bounds. Let βu be the peak (across frequency) of the upper bound for µ, and βl 
be the peak (across frequency) of the lower bound for µ. Then:

• For all perturbation matrices ∆ ∈ ∆ satisfying 

the perturbed system is stable and ||FU(M,∆)||∞ ≤ βu.

• There is a particular perturbation matrix ∆ ∈ ∆ satisfying

that causes either ||FU(M,∆)||∞ ≥ βl, or instability.

Hence the gap between the upper and lower bounds leads to gaps in your 
inability to precisely determine the robust performance.

There are two exogenous disturbances: a force disturbance d at the input to the 
plant, and sensor noise n at the measurement. There is a single error, the 

max σ ∆ jω( )[ ] < 1
β
--- 

ω

max σ ∆ jω( )[ ] = 1
β
--- 

ω

max σ ∆ jω( )[ ] < 1
βu
------ ,

ω

max σ ∆ jω( )[ ] = 1
βl
----- 

ω
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output of the plant. The (weighted) open-loop transfer functions satisfy 2.6 ≤ 
Ted ≤ 4.0 depending on the value of 1 ≥ δ1 ≥ –1, and of course Ten = 0. Hence the 
objective of control is to satisfy

for all allowable perturbations.

In terms of M, we have

T is a 1-output, 2-input system, so the fictitious perturbation block, ∆F, must 
be 2 × 1. Hence, the augmented uncertainty structure has three blocks, and 
they are:

• A scalar real parameter

• A scalar, transfer function uncertainty block

• A 2 × 1 full transfer function uncertainty block

deltaset = [-1 0;1 1]; 
fict_blk = [2 1]; 
aug_deltaset = [deltaset ; fict_blk];

Now, the nominal value of T is simply FU(M,02×2), which is just M22. Plot the 
magnitude (versus frequency) of these elements to see the nominal closed-loop 
transfer function. In the next command, we extract M22 in two different but 
equivalent manners.

vplot('liv,lm',sel(M_g,3,3:4),starp(zeros(2,2),M_g))

The robust performance µ calculation gives information about how much these 
transfer functions are affected by the linear fractional perturbations δ1and δ2.

max Ted jω( ) 2 Ten jω( ) 2
+[ ]

1
2
---

1≤
ω

T FU M
δ1 0

0 δ2 s( )
,

 
 
 
 

=
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The calculation is carried out on the entire matrix M, using the augmented 
uncertainty structure.

[rpbnds,rpdvec,rpsens,rppvec,rpgvec] = mu(M_g,aug_deltaset);
vplot('liv,m',rpbnds);

The peak value (of both lower and upper bounds) is about 1.02. This implies 
that robust performance is not quite achieved. In other words, for every 

perturbation ∆ = diag [δ1,δ2(s)] satisfying , we are 

guaranteed stability and FU(M,∆) ≤ 1.02. Moreover, there is a perturbation ∆ = 

diag [δ1,δ2(s)] with such that

||FU(M,∆)||∞ ≈ 1.02 > 1.
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max σ ∆ jω( )[ ] < 1
1.02
----------- 

ω

max σ ∆ jω( )[ ] 1
1.02
-----------≈  < 1

ω
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This can be constructed with dypert, and put into the closed-loop system to 
verify the degradation of performance.

pert = dypert(rppvec,aug_deltaset,rpbnds,[1;2]); 
spoles(pert) 
seesys(pert) 
hinfnorm(pert) 
hinfnorm(starp(pert,M)) 
vplot('liv,lm',vnorm(starp(pert,M_g)))
vplot('liv,lm',starp(pert,M_g))

Using µ to Analyze Worst-Case Performance 
In addition to determining if a system has robust performance to uncertainty, 
it is useful to get the worst-case perturbation of a given size. For instance, 
using perturbations of a particular structure ∆, and restricting to those of size 
≤ α, what is the worst performance possible (as measured in || ⋅ ||∞ norm) and 
what is the perturbation that causes the largest degradation of performance? 
Precisely given α > 0, the worst-case performance associated with structured 
perturbations of size α is defined as

The perturbation matrix which achieves the maximum is denoted ∆bad,α.

The command wcperf assumes that the performance transfer function is an 
upper loop LFT

FU(M,∆)

so that the uncertainty structure represented by deltaset is closed around the 
upper loops of M. The corresponding worst-case perturbation can be used in 
high-fidelity time-domain simulations to further understand the effect of 
uncertainty. Plotting W(M,α) versus α yields the worst-case performance 
tradeoff curve, which shows the tradeoff between size of uncertainty and 
worst-case performance. This can be used to assess the relative merits of two 
different controllers. The command wcperf computes the performance 
degradation curves. The syntax to compute the worst-case perturbation of size 

W M ∆ α, ,( ) := 

max σ ∆ jω( )[ ] α≤  
ω

max FU M ∆,( ) ∞

∆ ∆∈
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0.8, and compute the performance degradation curves with at least 10 points is 
given below. The degradation curves are shown in Figure 4-22.

alpha = 0.8; 
npts = 10; 
[deltabad,lowbnd,uppbnd] = wcperf(M_g,deltaset,alpha,npts);
seesys(deltabad) 
hinfnorm(deltabad) 
hinfnorm(starp(deltabad,M)) 
vplot(lowbnd,uppbnd) 
grid

Figure 4-22:  Worst-Case Performance Degradation Curves

Because µ can only be bounded above and below, the worst-case performance 
degradation can also only be bounded. The VARYING matrices lowbnd and 
uppbnd bound the worst-case performance degradation.
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Summary 
At this point, you should be well suited to explore the examples involving 
µ-analysis, namely the “Analysis of Controllers for an Unstable System”, 
“MIMO Margins Using m” and the “Space Shuttle Robustness Analysis” 
sections in Chapter 7. The rest of this chapter is a theoretical development of 
the properties of µ, and is not necessary reading at this point. Later, as you 
work with the µ software, and get comfortable with the interpretation of µ as a 
robust stability and robust performance measure, we encourage you to 
complete reading this chapter and learn more about this powerful framework.
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Structured Singular Value Theory
This section covers a brief description of the mathematical properties of the 
structured singular value, µ. The material is mathematical, relying mostly on 
linear algebra concepts. Unfortunately, although many of the concepts are 
simple, the notation required to state things precisely gets messy and 
cumbersome. The notation used in this chapter is standard. It is listed in the 
“Notation” section of Chapter 3.
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Complex Structured Singular Value

Definitions
This section is devoted to defining the structured singular value, a matrix 
function denoted by µ(⋅). We consider matrices M ∈ Cn×n. In the definition of 
µ(M), there is an underlying structure ∆, (a prescribed set of block diagonal 
matrices) on which everything in the sequel depends. For each problem, this 
structure is in general different; it depends on the uncertainty and 
performance objectives of the problem. Defining the structure involves 
specifying three things; the type of each block, the total number of blocks, and 
their dimensions.

There are two types of blocks: repeated scalar and full blocks. Two nonnegative 
integers, S and F, represent the number of repeated scalar blocks and the 
number of full blocks, respectively. To keep tracking of their dimensions, we 
introduce positive integers r1,. . . ,rS; m1,. . . ,mF. The ith repeated scalar block 
is ri × ri, while the jth full block is mj × mj. With those integers given, we define 
∆ ⊂ Cn×n as

(4-5)

For consistency among all the dimensions, we must have

Often, we will need norm bounded subsets of ∆, and we introduce the following 
notation

(4-6)

Note that in Figure 4-5 all of the repeated scalar blocks appear first. This is just 
to keep the notation as simple as possible, in fact they can come in any order. 
Also, the full blocks do not have to be square, but restricting them as such saves 

∆ diag δ1Ir1
,…,δsIrS

,∆1,…,∆F[ ] : δi C ∆j C
mj mj×

∈,∈
 
 
 

=

ri

i 1=

S

∑ mj

j 1=

F

∑+ n.=

B∆ ∆ ∆∈  : σ ∆( ) 1≤{ }=
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a great deal in terms of notation. The software will handle nonsquare full 
blocks, as well as any order to the blocks.

Definition 4.1: For M ∈ Cn×n, µ∆(M) is defined

(4-7)

unless no ∆ ∈ ∆ makes I – M∆ singular, in which case µ∆(M) := 0.

Remark 1: Without loss in generality, the full blocks in the minimal norm ∆ 
can each be chosen to be dyads (rank = 1). To see this, first consider the case 
of only 1 full block, ∆ = Cn×n. Suppose that I – M∆ is singular. Then for some 
unit-norm vector x ∈ CnM∆x = x. Define y := ∆x. It follows that y ≠ 0, and ||y|| 
≤ . Hence, define a new perturbation, as 

Obviously, , and , so that is also singular. 
Hence we have replaced a general perturbation ∆ which satisfies the 
singularity condition, with a rank 1 perturbation that is no larger (in the 

 sense), but still satisfies the singularity condition. Repeating this on a 
block-by-block basis allows for each full block to be a dyad. The software 
always carries out this particular construction. 

Remark 2: It is instructive to consider a feedback interpretation of µ∆(M)at 
this point. Let M ∈ Cn×n be given, and consider the loop shown below.

This picture is meant to represent the loop equations

µ∆ M( ) := 1
min σ ∆( ) : ∆ ∆∈ , det I M∆–( ) 0={ }
-------------------------------------------------------------------------------------------------

σ ∆( ) ∆̃ Cn n×∈

∆̃ := yx*

σ ∆̃( ) y σ ∆( )≤= y ∆̃x= I M∆̃–

σ .( )

M

�

�

-

vu
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(4-8)

As long as I – M∆ is nonsingular, the only solutions u, v to the loop equations 
are u = v = 0. However, if I – M∆ is singular, then there are infinitely many 
solutions to Figure 4-8, and the norms ||u||, ||v|| of the solutions can be 
arbitrarily large. With an abuse of convention, we call this constant matrix 
feedback system unstable. Likewise, the term stable will describe the situation 
when the only solutions are identically zero. In this context, then, µ∆(M) is a 
measure of the smallest structured ∆ that causes instability of the constant 
matrix feedback loop shown above.

An alternative expression for µ∆(M) follows from the definition.

Lemma 4.2: 

In view of this lemma, continuity of the function µ : Cn×n → R is apparent. In 
general, though, the function µ : Cn×n → R is not a norm, since it doesn’t satisfy 
the triangle inequality. However, for any α ∈ C, µ(αM) = |α|µ(M), so in some 
sense, it is related to how big the matrix is in a norm sense.

We can relate µ∆(M) to familiar linear algebra quantities when ∆ is one of two 
extreme sets:

• If ∆ = {δI : δ ∈ C} (S = 1, F = 0, r1 = n), then µ∆(M) = ρ(M), the spectral radius 
of M.

Proof: The only ∆’s in ∆ which satisfy the det(I – M∆) = 0 constraint are 
reciprocals of nonzero eigenvalues of M. The smallest one of these is 
associated with the largest (magnitude) eigenvalue, so, µ∆(M) = ρ(M).

• If ∆ = Cn×n (S = 0, F = 1, m1 = n), then .

Proof: If , then , so I – M∆ is nonsingular. Applying 

equation Figure 4-7 implies . On the other hand, let u and v be 

v ∆u.=

u Mv=

µ∆ M( )    max   ρ M∆( )=
∆ B∆∈

µ∆M σ M( )=

σ ∆( ) 1
σ M( )
--------------< σ M∆( ) 1<

µ∆ M( ) σ M( )≤
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unit vectors satisfying , and define . Then 

and I – M∆ is obviously singular. Hence, .

For a general ∆ as in Figure 4-5 we must have

(4-9)

From the definition of µ, and the two special cases above, we conclude that 

(4-10)

These bounds alone are not sufficient for our purposes, because the gap 
between ρ and  can be arbitrarily large. They are refined by considering 
transformations on M that do not affect µ∆(M), but affect ρ and  . To do this, 
define the following two subsets of Cn×n.

(4-11)

(4-12)

Note that for any ∆ ∈ ∆, Q ∈ Q∆, and D ∈ D∆,

(4-13)

(4-14)

Mv σ M( )u= ∆ := 1
σ M( )
--------------vu*

σ ∆( ) 1
σ M( )
--------------= µ∆ M( ) σ M( )≥

δIn : δ C∈{ } ∆ Cn n×⊂ ⊂

ρ M( ) µ∆ M( ) σ M( )≤ ≤

σ
σ

Q∆ Q ∆∈  : Q*Q In={ }=

D∆ = 
diag D1,… DS,d1Im1

,… dF 1–, ImF 1–
,ImF

,[ ] : 

Di C
ri ri×

Di Di
* 0 dj R dj 0>,∈,>=,∈{ {

.

Q* Q∆∈ Q∆ ∆∈ ∆Q ∆∈ σ Q∆( ) σ ∆Q( ) σ ∆( )= =

D∆ ∆D.=
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Consequently,

Theorem 4.3: For all Q ∈ Q∆ and D ∈ D∆

(4-15)

Proof: For all D ∈ D∆ and ∆ ∈ ∆,

det(I – M∆) = det(I – MD–1∆D) = det(I – DMD–1∆)

since D commutes with ∆. Therefore, µ∆(M) = µ∆(DMD–1). Also, for each 
Q ∈ Q∆, det(I – M∆) = 0 ⇔ det(I + MQQ*∆) = 0. Since Q*∆ ∈ ∆ and 

,we get µ∆(MQ) = µ∆(M) as desired. The argument for QM is 
the same.

Therefore, the bounds in Figure 4-10 can be tightened to

(4-16)

where the equality comes from Lemma 2.2. Note that the last element in the D 
matrices in equation Figure 4-12 is normalized to 1 since for any nonzero scalar 
γ, DMD–1 = (γD)M(γD)–1.

Bounds
In this section we will concentrate on the bounds

The lower bound is always an equality ([Doy]). Unfortunately, the quantity 
ρ(QM) can have multiple local maxima which are not global. Thus local search 
cannot be guaranteed to obtain µ, but can only yield a lower bound. The µ 
software actually uses a slightly different formulation of the lower bound as a 
power algorithm which is reminiscent of power algorithms for eigenvalues and 
singular values ([PacD]). While there are open questions about convergence, 
the algorithm usually works quite well and has proven to be an effective 
method to compute µ.

µ∆ MQ( ) µ∆ QM( ) µ∆ M( ) µ∆ DMD 1–( )= = =

σ Q*∆( ) σ ∆( )=

max    ρ QM( )   max   ρ ∆M( )≤ µ∆ M( )      inf     σ DMD 1–( )≤=
Q Q∆∈ ∆ B∆∈ D D∆∈

max    ρ QM( ) µ∆ M( )    inf     σ DMD 1–( )≤ ≤      
Q Q∆∈ D D∆∈
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The upper bound can be reformulated as a convex optimization problem, so the 
global minimum can, in principle, be found. Unfortunately, the upper bound is 
not always equal to µ. For block structures ∆ satisfying 2S + F ≤ 3, the upper 
bound is always equal to µ∆(M), and for block structures with 2S + F > 3, there 
exist matrices for which µ is less than the infimum. This can be summarized in 
the following diagram, which shows for which cases the upper bound is 
guaranteed to be equal to µ.

Several of the boxes have connections with standard results:

• S = 0, F = 1 : 

• S = 1, F = 0: This is a standard result

in linear algebra. It is also equivalent to fact that Lyapunov stability and 
exponential stability are equivalent for linear systems.

• S = 0, F = 2: This case was studied by Redheffer ([Red1] and [Red2]).

• S = 1, F = 1: This is equivalent to a standard result on state-space 
computation of H∞ norms.

• S = 2, F = 0: This is equivalent to the fact that for multidimensional systems 
(2-d, and higher), exponential stability is not equivalent to Lyapunov 
stability, [AndAJM], [PacD].

• S = 0, F = 3: For this case, the upper bound is always equal to µ. This 
important result is due to Doyle. [Doy]

• S = 0, F ≥ 4: For this case, the upper bound is not always equal to µ. This is 
important, as these are the cases that arise most frequently in applications. 
Fortunately, the bound seems to be close to µ. The worst known example has 
a ratio of µ over the bound of about.85, and most systems are close to 1.

The above bounds are much more than just computational schemes, although 
that is their primary role in this toolbox. They are also theoretically rich, and 
can unify a number of apparently quite different results in linear systems 

F

0 1 2 3 4

0 yes yes yes no

S 1 yes yes no no no

2 no no no no no

µ∆ M( ) σ M( )=

D D∆∈
µ∆ M( ) ρ M( )    inf     σ DMD 1–( )= =
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theory. There are several connections with Lyapunov stability, two of which 
were hinted at above, but there are further connections between the upper 
bound scalings and solutions to Lyapunov and Riccati equations. Indeed, many 
major theorems in linear systems theory follow from the upper bounds and 
some results for linear fractional transformations (see “Linear Fractional 
Transformations”). The lower bound can be viewed as a natural generalization 
of the maximum modulus theorem [BoyD]. While a complete exposition of these 
ideas is beyond the scope of this tutorial, some of the more elementary concepts 
will be explored in later sections.

For the purposes of this toolbox, the most important use of the upper bound is 
as a computational scheme when combined with the lower bound. For reliable 
use of the µ theory it is essential to have upper and lower bounds. The other 
important feature of the upper bound is that it can be combined with H∞ 
controller synthesis methods to yield an ad-hoc µ-synthesis method. Note that 
the upper bound, when applied to transfer functions, and maxed across 
frequencies, is simply a scaled H∞ norm. This is exploited in the µ-synthesis 
techniques in this toolbox.

Computational Exercise with the mu Command
The calculation of bounds for the structured singular value (µ) is performed 
with the µ-Tools command mu. The input arguments to mu include the matrix 
on which µ is to be calculated, the block structure associated with the input 
matrix and an optional argument defining the type bound calculations to be 
performed. The outputs from mu are the lower and upper bound, scaling 
matrices used to achieve the upper bound, a sensitivity measure associated 
with the upper bound calculation and a perturbation matrix ∆ which makes 
det(I – M∆) = 0. A more detailed description of the mu can be found in the 
command reference section.

The following exercise uses the command mu to compute upper and lower 
bounds for the structured singular value of a given 5 × 5 complex matrix, for a 
variety of block structures. It is intended to show the dependence of µ∆(M) on 
the particular structure ∆. The user can also verify the correctness of the 
bounds produced by the calculation.
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The set of commands used are:

Syntax for mu
[bnds,dvec,sens,pvec] = mu(M,deltaset);

Description

is represented by the MATLAB array

mu upper and lower bounds for µ∆(M)

unwrapd unwrap the D scaling matrices associated with upper bound

unwrapp unwrap the perturbation ∆ associated with lower bound

M Matrix to calculate µ of, can be a CONSTANT or VARYING 
matrix.

deltaset block structure information about the set ∆; the number of 
perturbation blocks, their sizes and types. For example: the 
block structure

∆ := 

δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4

 : δi C∈

 
 
 
 
 
 
 
 
 

deltaset

1 1
1 1
1 1
1 1

= .
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The block structure 

is represented by the MATLAB array

Finally, the block structure 

is represented by the MATLAB array

Lower and Upper bounds: The output bnds is a 1 × 2 matrix. It is VARYING 
if M is VARYING, and CONSTANT if M is CONSTANT. The first entry of bnds 
(either bnds(1,1) or sel(bnds,1,1) in the VARYING case) is an upper bound 
for µ∆(M), and the second entry is a lower bound for µ∆(M). 

Scaling matrices (these give upper bound): The matrix dvec contains the 
scaling matrices for the upper bound. As in the case for bnds, it is of the same 
type as M. Since the scaling matrices almost always have a number of zero 

∆ := 

∆1 0 0

0 ∆2 0

0 0 δ3

 : ∆1 C3 2× ,∆2 C4 5×∈ ,δ3 C∈∈

 
 
 
 
 
 
 

,

deltaset
3 2
4 5
1 1

= .

∆ := 

δ1I3 0 0

0 ∆2 0

0 0 δ3I2

 : δ1 δ3, C,∆2 C2 2×∈∈

 
 
 
 
 
 
 

deltaset
3 0
2 2
2 0

= .
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entries, they are stored in dvec as a row vector. They can be unwrapped into 
the block diagonal form using unwrapd.

[Dl,Dr] = unwrapd(dvec,deltaset);

For the most part, these two matrices are the same, in fact, if the block 
structure deltaset has no nonsquare full blocks, then Dl = Dr. In any event, 
the following are always true

and . 

Sensitivity (used in µ-synthesis): a sensitivity measure of the maximum 
singular value of with respect to the values in Dl (and Dr). It is 
calculated in an ad-hoc manner, and is mainly used when fitting frequency 
varying D’s with rational functions via the routine fitsys. We will not make 
use of it in this example.

Perturbation (gives lower bound): The matrix pvec contains the 
perturbation matrix ∆ which makes I – M∆ singular. This perturbation 
corresponds to the lower bound in bnds. It is of the same type as M. Since the 
structured set usually contains many zero elements, the perturbation matrix ∆ 
is stored efficiently in pvec as a row vector. It can be unwrapped into the block 
diagonal form using unwrapp.

delta = unwrapp(pvec,deltaset);

Note that is equal to the reciprocal of the lower bound (in bnds), and

Try this on some examples:

simplemu;

This creates a 5 × 5 matrix, M, and the different block structures, deltaseta, 
deltasetb,...,deltaseti.

Dl Dl* 0>= ,Dr Dr* 0 Dr∆ ∆=,>= Dl ∆∀ ∆∈

µ∆ M( ) σ DlMDr
1–( )≤

DlMDr
1–

σ ∆( )

∆ ∆∈
det I M∆–( ) = 0
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Consider the block structure defined by the array deltasete. Run the mu 
command, and unwrap the ds and the perturbation.

[bnds,dvec,sens,pvec] = mu(M,deltasete); 
[Dl,Dr] = unwrapd(dvec,deltasete); 
delta = unwrapp(pvec,deltasete);

Verify that:

• ∆ ∈ ∆; print out the matrix delta, and check that its structure corresponds 
to that given by the array deltasete. 

• Compare the norm of the matrix delta with the lower bound from bnds.
bnds 
norm(delta);

• Note that the  should equal the inverse of the lower bound 
(1 bnds(1,2)).

• Verify that det(I5 – M∆) = 0.
det(eye(5)-M*delta)

or

eig(M*delta) % should have an eigenvalue at 1

• Look at the scaling matrices Dl and Dr. Note that Dr∆ = ∆Dl for all ∆ ∈ ∆. 
Check that the upper bound in bnds comes from these.

bnds(1,1) 
norm(Dl*M/Dr)

Try the other examples, and verify the consistency of all aspects of the results.

σ ∆( )
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Mixed Real/Complex Structured Singular Value
Up until this point, this chapter has dealt only with complex-valued 
perturbation sets, as in equation Figure 4-5, and the complex structured 
singular value to assess stability and performance degradation under these 
types of perturbations. In specific instances, we have seen that it may be more 
natural to model some of the uncertainty with real perturbations, for instance 
when the real coefficients of a linear differential equation are uncertain. While 
it is possible to simply treat these perturbations as complex and proceed with 
the complex-µ analysis, the results can be expected to be conservative. Hence, 
researchers have developed algorithms for robustness tests with both real and 
complex perturbation blocks. The command mu also works for these extremely 
useful calculations.

Hence, there are three different types of uncertainty blocks allowed in the mu 
software:

• Repeated scalar real blocks

• Repeated scalar complex blocks

• Full complex blocks

The general structured singular value theory also includes full real blocks, but 
these are difficult to motivate from the physics of real problems, and 
convenient upper and lower bounds for structures with these types of blocks 
are not well developed. This is an ongoing area of research, and later versions 
of µ-Tools may support these types of blocks.

The theory for a mixed real/complex upper bound is more complicated to 
describe than the upper bound theory for complex µ. In addition to D matrices, 
which exploit the block diagonal structure of the perturbation, there are G 
matrices, which exploit the real structure of the perturbations. For illustrative 
purposes, consider a specific block structure. Suppose that

∆ := 

δ1I2 2× 0 0

0 δ2I4 4× 0

0 0 ∆3

 : δ1 R,δ2 C∈ ,∆3 C3 3×∈∈

 
 
 
 
 
 
 
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In mu, this is denoted by

deltaset = [-2 0;4 0;3 3];

A zero (0) in the second column signifies a repeated scalar block (as before). The 
negative sign (–) indicates a real block.

Associated with ∆, define the sets

and

If there is a β > 0, D ∈ D∆ and G ∈ G∆ such that

(4-17)

then

µ∆(M) ≤ β

This bound, [YouND1], is a derivative of an earlier bound in [FanTD]. The 
smallest β < 0 for which D and G matrices exist which satisfy this constraint is 
what µ-Tools calls the mixed µ upper bound for M. Using manipulations that 
are now standard in robust control theory, the computation of the best such β 
is reformulated into an Affine Matrix Inequality (AMI) and solved with special 
purpose convex programming techniques. For perturbation sets with multiple 

D∆ = 

D1 0 0

0 D2 0

0 0 d3I3 3×

 : D1 C2 2×∈ ,det D1( ) 0≠

D2 C4 4×∈ ,det D2( ) 0,d3 C∈ ,d3 0≠≠

G∆ = 

diag gi[ ]i 1 2,=
0 0

0 04 4× 0

0 0 02 2×

 : gi R∈

 
 
 
 
 
 
 

σ I G2
+( )

1
4
---– 1

β
---DMD 1– jG– 

  I G2
+( )

1
4
---–

1≤
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blocks, the general structure of the sets D∆ and G∆ remains the same, with one 
scaling block for each uncertainty block.

In mu, only the complex full blocks can be nonsquare. This causes the D scaling 
on the left of M to be slightly different from the D scaling on the right. The 
single d variable associated with the full block is repeated a certain number of 
times on the left, and a different number of times on the right, leading to 
nonsquare D scaling matrices (the Dl and Dr that we have already seen). Of 
course, the G scaling comes in different sizes too. Note that for any complex full 
blocks, the associated blocks of G are zeros, since G is only nonzero in the blocks 
associated with the real uncertainties. However, the dimension of the zero 
blocks of G must line up with the correct rows/columns of M. Hence, in equation 
Figure 4-17, there are three different Gs, all having exactly the same nonzero 
elements, but different sizes of zero blocks associated with any nonsquare full 
blocks. The different Gs are denoted Gl, Gm, and Gr. The sufficient condition 
for the µ∆(M) < β is rewritten as

(4-18)

The lower bound generated in mu comes from a power iteration which finds 
matrices ∆ ∈ ∆ that make I – M∆ singular. The power iteration for mu is a 
generalization of the power iteration used in earliest versions of µ-Tools. The 
generalization is described in detail in [YouD].

The combination of upper and lower bounds makes the mu software unique. The 
upper bounds give a guarantee on the worst-case performance degradation 
that can occur under perturbation. The lower bounds actually exhibit a 
perturbation that causes significant performance degradation. This 
perturbation can then be used in time-domain simulations to better 
understand its effect.

σ I Gl
2

+( )
1
4
---– 1

β
---DlMDr

1– jGm– 
  I Gr

2
+( )

1
4
---–

1.≤
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Specifics About Using the mu Command with Mixed 
Perturbations
The syntax of mu and muunwrap are

[bnds,dvec,sens,pvec,gvec] = mu(M,deltaset,options);
[dl,dr,gl,gm,gr] = muunwrap(dvec,gvec,deltaset); 
[delta] = muunwrap(pvec,deltaset);

Their purposes are:

Other functions associated with mu (such as unwrapd and unwrapp, which have 
been illustrated already) are detailed in Chapter 8, “Reference” under mu.

Computational Exercise with the mu Command — 
Mixed Perturbations
The input argument deltaset is as before, but real repeated scalar blocks are 
specified with a negative integer rather than a positive integer. For example, 
deltaset = [-3 0; 2 3] is similar to deltaset = [3 0; 2 3] except that the 
3 × 3 repeated block is treated as real rather than complex. Also note that 
redefining deltaset = abs(deltaset) always gives the complex version of a 
mixed µ problem.

For instance, the block structure

is represented by the array

deltaset = [1 1;1 1;-1 0;-1 0];

mu general mixed µ computation

muunwrap extract block-diagonal scalings D and G from row vectors, and 
extract from row vector the smallest perturbation ∆ which 
causes singularity.

∆ := 

δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4

 : δi C,i 1 2 δj, ,= R∈ ,j 3 4.,=∈

 
 
 
 
 
 
 
 
 
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The block structure

is represented by the array

deltaset = [3 2;4 5;-3 0];

Finally, the block structure

is represented by the array

deltaset = [3 0;2 2;-2 0];

The correctness of the upper bound can easily be checked with the inequality 
in equation Figure 4-18. The correctness of the lower bound can be verified by 
calculating the perturbation, ∆, that mu returns, verifying its block structure 
and norm, checking that the matrix M∆ has an eigenvalue exactly at 1 (which 
is equivalent to I – M∆ being singular).

Try some examples on a constant 5 × 5 matrix.

simprmu

This loads a 5 × 5 complex matrix, M, and different block structures 
deltaseta, deltasetb,...,deltaseti. Consider the block structure ∆ 
defined by deltasete, Run the mu command, and unwrap the D, G, and 
perturbation matrices.

[bnds,dvec,sens,pvec,gvec] = mu(M,deltasete); 
[dl,dr,gl,gm,gr] = muunwrap(dvec,gvec,deltasete); 
[delta] = muunwrap(pvec,deltasete);

∆ diag [∆1 ∆2 δ3I3 3× ] : ∆1 C3 2× ,∆2 C4 5×∈ ,δ3 R∈∈
 
 
 

,=

∆ := 

δ1I3 3× 0 0

0 ∆2 0

0 0 δ3I2 2×

 : δ1 C,δ3 R∈ ,∆2 C2 2×∈∈

 
 
 
 
 
 
 
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Verify that:

• ∆ ∈ ∆; print out delta, and check that its block structure corresponds to that 
given by deltasete.
deltasete 
delta

• Compare the lower bound from µ with the norm of ∆.
[bnds(1,2) 1/norm(delta)]

• Verify that det(I5 – M∆) = 0
eig(M*delta)

• Verify the upper bound by checking the structure of dl, dr, gl, gm, and gr, 
and the inequality in equation Figure 4-18.

deltasete 
dl 
dr 
gl 
gm 
gr 
oobdmdimjg = 1/bnds(1,1)*dl*mat/dr - sqrt(-1)*gm; 
gscl_l = inv(sqrtm(sqrtm(eye(5) + gl*gl)))); 
gscl_r = inv(sqrtm(sqrtm((eye(5) + gr*gr))));
norm(gscl_l*oobdmdimjg*gscl_r)

Try the other block structures, and verify the consistency of all aspects of the 
bounds, scaling matrices, and perturbations.
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Linear Fractional Transformations
Using only the definition of µ, some simple theorems about a class of general 
matrix transformations called linear fractional transformations (LFTs) can be 
proven. To introduce these, consider a complex matrix M partitioned as

(4-19)

and suppose there is a defined block structure ∆2 which is compatible in size 
with M22 (for any ∆2 ∈ ∆2, M22∆2 is square). For ∆2 ∈ ∆2, consider the following 
loop equations,

(4-20)

This set of equations Figure 4-20 is called well posed if for any vector d, there 
exist unique vectors w, z, and e satisfying the loop equations. It is easy to see 
that the set of equations is well posed if and only if the inverse of I – M22∆2 
exists. If not, then depending on d and M, there is either no solution to the loop 
equations, or there are an infinite number of solutions. When the inverse does 
indeed exist, the vectors e and d must satisfy e = FL(M,∆2)d, where

(4-21)

FL(M,∆2) is a linear fractional transformation on M by ∆2, and in a feedback 
diagram appears as

M
M11 M12

M21 M22

=

e M11d M12w+=

w ∆2z=
z M21d M22w+=

FL M ∆2,( ) M11 M12∆2 I( M22∆2 ) 1– M21–+=

e

M

�

z

-

� d

�

w

�2
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The subscript L on FL pertains to the lower loop of M and is closed by ∆2. An 
analogous formula describes FU(M,∆1), which is the resulting matrix obtained 
by closing the upper loop of M with a matrix ∆1 ∈ ∆1.

In this formulation, the matrix M11 is assumed to be something nominal, and 
∆2 ∈ B2 :=  is viewed as a norm-bounded perturbation 
from an allowable perturbation class, ∆2. The matrices M12, M21, and M22 and 
the formula FL reflect prior knowledge on how the unknown perturbation 
affects the nominal map, M11. This type of uncertainty, called linear fractional, 
is natural for many control problems, and encompasses many other special 
cases considered by researchers.

The constant matrix problem to solve is:

• Determine whether the LFT is well posed for all ∆2 ∈ B2, and, 

• If so, then determine how large FL(M,∆2) can get for this norm-bounded set 
of perturbations.

The next section has three simple theorems which answer this problem.

Well Posedness and Performance for Constant LFTs
Let M be a complex matrix partitioned as

(4-22)

and suppose there are two defined block structures, ∆1 and ∆2, which are 
compatible in size with M11 and M22 respectively. Define a third structure ∆ as

(4-23)

Now there are three structures with which we may compute µ. The notation we 
use to keep track of this is as follows: µ1(⋅) is with respect to ∆1, µ2(⋅) is with 
respect to ∆2, : µ∆ (⋅) is with respect to ∆. In view of this, µ1(M11), µ2(M22), and 
µ∆(M) all make sense, though for instance, µ1(M) does not. Again, define the 
norm-bounded perturbation sets as

∆2 ∆2 : σ ∆2( )∈ 1≤{ }

M
M11 M12

M21 M22

=

∆
∆1 0

0 ∆2

 : ∆1 ∆1 ∆2 ∆2 ∈,∈

 
 
 
 
 

= .



Linear Fractional Transformations

4-69

Let ∆2 ∈ ∆2. The linear fractional transformation, FL(M,∆2) is well posed if 
I - M22∆2 is invertible, and in that case is defined as

(4-24)

The first theorem is nothing more than restating the definition of µ.

Theorem 4.4: The linear fractional transformation FL(M,∆2) is well posed for 
all ∆2 ∈ B2 if and only if µ2(M22) < 1.

As the perturbation ∆2 deviates from zero, the matrix FL(M,∆2) deviates from 
M11. The range of values that µ1(FL(M,∆2))takes on is intimately related to 
µ∆(M), as follows:

Theorem 4.5 [Main Loop Theorem]: The following are equivalent:

1 µ∆(M) <1

2 µ2(M22) < 1, and

3 µ1(M11) < 1, and

Proof: The proof is based on Schur formulae for determinants of block 
partitioned matrices, and can be found in [PacD]. The basic idea is simple, and 
we present the proof showing 3 → 1.

Bi ∆i ∆i : σ ∆i( )∈ 1≤{ }=: .

FL M ∆2,( ) M11 M12∆2 I( M22∆2 ) 1– M21–+=

max µ1 FL M ∆2,( )( ) 1<
∆2 B2∈

max µ2 FU M ∆1,( )( ) 1<
∆1 B1∈



4 Modeling and Analysis of Uncertain Systems

4-70

Let ∆i ∈ ∆i be arbitrary, with . Define 

Obviously, ∆ ∈ ∆, and .

Now

Since µ1(M11) < 1, and , it follows that I – M11∆1 is invertible, 
giving (using the Schur formula)

Collecting the ∆2 terms leaves

det(I – M∆) = det(I – M11∆1)det(I – FU(M,∆1)∆2)

Since each ∆i ∈ Bi, the assumption implies that µ2(FU(M,∆1)) < 1. By 
definition, then,

I – FU(M,∆1)∆2

is nonsingular, and so then is I – M∆. Now, this argument holds for any 
∆i ∈ ∆i, hence the definition of µ gives

µ∆(M) < 1

Remark: This theorem forms the basis for all uses of µ in linear system 
robustness analysis, whether from a state-space, frequency domain, or 
Lyapunov approach.

σ ∆i( ) 1≤

∆ := 
∆1 0

0 ∆2

σ ∆( ) 1≤

det I M∆–( ) = det
I M11∆1– M– 12∆2

M21∆1 I M– 22∆2

σ ∆1( ) 1≤

det I M∆–( ) = 

det I M11∆1–( )det I M22∆2– M21∆1– I M11∆1–( ) 1–
+ M12∆2( )
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Frequency Domain µ Review 
Since the frequency domain µ tests play a key role in robustness analysis, we 
summarize in this section the computational procedure and its subsequent 
interpretations. These involve not only constant, complex structured 
perturbations, but also linear, time-invariant, dynamical perturbations 
(unmodeled dynamics) as well.

Robust Stability
The most well-known use of µ as a robustness analysis tool is in the frequency 
domain. Suppose M(s) is a stable, multi-input, multi-output transfer function 
of a linear system, M. For clarity, assume M has nz inputs and nw outputs. Let 
∆ be a block structure, as in equation Figure 4-5, and assume that the 
dimensions are such that . We want to consider feedback 
perturbations to M which are themselves dynamical systems, with the 
block-diagonal structure of the set ∆.

In this section, we outline the proofs for the situation where the perturbations 
are assumed to be stable. This is not a restriction with parametric real 
uncertainty, as constant parameters are clearly stable. However, when using a 
multiplicative or additive unmodeled dynamics perturbation to model 
uncertainty in an unstable component (see the example in the “Unmodeled 
Dynamics” section), it is useful to allow unstable perturbations, with the 
restriction that the number of right-half-plane poles of the component remains 
constant. An alternate approach is to allow a block of the perturbation matrix 
to be an unstable transfer function. However, we restrict it to only take on 
values that preserve the number of right-half-plane poles of the perturbed 
component with which it is associated. In this case, the theorems we state are 
still correct, though the proofs must be modified. In fact, even more 
sophisticated assumptions about the perturbed systems can be made, including 
structured coprime factor uncertainty and gap metric uncertainty, but these 
are beyond the scope of this tutorial.

Let S denote the set of real-rational, proper (no poles at s = ∞), stable, transfer 
matrices. Associated with any block structure ∆, let S∆ denote the set of all 
block diagonal, stable rational transfer functions, with block structure like ∆.

∆ Cnz nw×⊂

S∆ := ∆ S : ∆ so( ) ∆∈ ∈  for all so C+∈{ }
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Theorem 4.6: Let β > 0. The loop shown in Figure 4-23 is well-posed and 
internally stable for all ∆ ∈ S∆ with  if and only if

Figure 4-23:  Robust Stability

Explanation of proof: This result is proven using the definition of µ, and 
the multivariable Nyquist criterion, [CheD]. Since M(s) and ∆(s) are assumed 
stable, the loop is internally stable if and only if the Nyquist plot of 
det (I – M(jω)∆(jω)) does not pass through, or encircle the origin. If ||M||∆ ≤ β, 
this guarantees that for any ∆ ∈ S∆, with ||∆||∞ < , any ω ∈ R, and any 
α ∈ [0, 1], the determinant

det[I – M(jω)(α ∆(jω))] ≠ 0

This guarantees that the Nyquist plot of det[I], (the above expression with 
α = 0) and the Nyquist plot of det[I – M(jω)∆(jω)], (above expression with 
α = 1) encircle the origin the same number of times. It is obvious that the 
Nyquist plot of det[I] is just a single point at 1, and hence does not encircle the 
origin at all, therefore the Nyquist plot of det[I – M(jω)∆(jω)] does not pass 
through, or encircle the origin, and hence the loop is indeed stable. Conversely, 
if ||M||∆ > β, then at some particular frequency . By definition 
of µ∆(⋅), this means there is a constant matrix ∆ ∈ ∆ such that , and 

. Now, it is possible to find a real-rational, stable block 
diagonal transfer matrix ∆ ∈ S∆ such that , and . Hence, 
using this real-rational ∆, the loop will have a closed-loop pole at . A 
more careful proof of these ideas is found in [CheD]. An alternate proof using 
the maximum-modulus property of µ can be found in [PacP].

In summary, the peak value on the µ plot of the frequency response that the 
perturbation sees determines the size of perturbations that the loop is robustly 
stable against.

∆ ∞
1
β
---<

M ∆ sup   µ$∆ M jω( )( ) β≤=
ω R∈

:

M

�

-

�

1
β
---

ω µ∆ M jω( )( ) β>,
σ ∆( ) 1

β
---<

det I M jω( )∆–( ) 0=
∆ ∞

1
β
---< ∆ jω( ) ∆=

s jω=
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Robust Performance
Stability is not the only property of a closed-loop system that must be robust to 
perturbations. Typically there are exogenous disturbances acting on the 
system (wind gusts, sensor noise) which result in tracking and regulation 
errors. Under perturbation, the effect that these disturbances have on error 
signals can greatly increase. In most cases, long before the onset of instability, 
the closed-loop performance will degrade to the point of unacceptability. Hence 
the need for a robust performance test. Such a test will indicate the worst-case 
level of performance degradation associated with a given level of perturbations.

Assume M is a stable, real-rational, proper transfer function, with nz + nd 
inputs, and nw + ne outputs. Partition M in the obvious manner, so that M11 
has nz inputs and nw outputs, and so on. Let  be a block structure, 
as in equation Figure 4-5. Define an augmented block structure

The setup is to address theoretically the robust performance questions about 
the loop shown in Figure 4-24.

The perturbed transfer function from d to e is denoted by FU(M,∆).

Theorem 4.7: Let β > 0. For all ∆(s) ∈ S∆ with , the loop shown above 
is well-posed, internally stable, and ||FU(M,∆)||∞ ≤ β if and only if

Figure 4-24:  Robust Performance

The proof of this is exactly along the lines of the earlier proof, but also applying 
Theorem 4.5. See [DoyWS] and [PacD] for details.

∆ Cnw nz×⊂

∆P
∆ 0
0 ∆F

 : ∆ ∆ ∆F C
nd ne×

∈,∈
 
 
 

=:

∆ ∞
1
β
---<

M ∆P
 := sup   µ∆P

M jω( )( ) β≤
ω R∈

M

�-

�

��e d
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Real vs. Complex Parameters
There are many approaches to model real, uncertain parameters. Suppose that 
a coefficient c, in a particular system, is assumed to be constant, but unknown, 
and the value of c is modeled to lie in an interval, say,

c ∈ [0.8 1.6]

This can be modeled effectively with a real perturbation,

c ∈ {1.2 + (0.4)δ : δ ∈ R, |δ| ≤ 1}

Clearly, this set captures the uncertainty in the coefficient c. What is the 
correct interpretation of the uncertain set model if δ is taken as complex,

c ∈ {1.2 + (0.4)δ : δ ∈ C, |δ| ≤ 1} ?

In a linear, time-invariant system, robustness to this constant, complex 
uncertain parameter c is mathematically equivalent to robustness to all stable, 
linear, time-invariant transfer functions, , whose Nyquist plots lie in the 
disk shown in Figure 4-25.

Figure 4-25:  Complex Disc Covering Real Interval: Restriction of the Nyquist 
Plot of 

Using complex parameters, the uncertain model for c represents a stable linear 
system whose characteristics are similar to an uncertain real gain, but deviate 
in a manner quantified by the disc-shaped constraint on its frequency response. 
In general, using disks instead of intervals leads to more conservative 
robustness properties. With mu, it is easy and fast to explore the differences in 
the robustness properties as the uncertainty model changes.
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Block Structures with All Real Blocks 
The function µ is not necessarily a continuous function when all of the 
perturbation blocks are real. This mathematical fact is pointed out in 
[BarKST], and an example is given where the robustness margin to real 
parameter uncertainty changes abruptly for infinitesimal changes in the 
problem data. Also, in the [BarKST] example, the structured singular value of 
the frequency response exhibits discontinuities across frequency.

What is the significance of these issues on mu? The discontinuities can cause 
problems in the convergence of the lower bound power algorithm. For problems 
with purely real uncertainty, the lower bound algorithm may converge to a 
value which is significantly lower than µ itself, or may not even converge at all. 
This could be a serious problem, but usually it is not, because almost all 
problems have a full complex block associated with a robust performance 
specification. It turns out that if a µ problem has a complex block that counts, 
then the function µ will be continuous at the problem data.

Sometimes, though, a robust stability calculation for an uncertain system with 
only real uncertainties is needed. Consider the robust stability problem 
represented in Figure 4-26.

Figure 4-26:  Robust Stability with Real Uncertainty

While the upper bound from mu will be effective, the lower bound potentially 
will have convergence problems, yielding little information in terms of bad 
perturbations. A fix, which has both engineering and mathematical 
justification, is available. 
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In µ-Tools vernacular, let M be the VARYING matrix (usually a frequency 
response) of which µ is to be computed. Let blkrs_R be the real block structure, 
that is compatible in dimension with M. Recall that abs(blkrs_R) is exactly the 
same block structure as blkrs_R, but consists of complex blocks. Define:

pdim = ynum(M); %only real blocks --> square 
alpha = 0.1; 
fixl = [eye(pdim) ; alpha*eye(pdim)]; 
fixr = fixl'; 
% duplicate complex blocks below reals 
blkrs_RC = [blkrs_R ; abs(blkrs_R)]; 
Mmix = mmult(fixl,M,fixr); 
[bnd_RC,rowd_RC,sens,rowp_RC] = mu(Mmix,blkrs_RC);

What does all of this mean? The block structure has been expanded (to twice 
the original size) by including complex blocks which are exactly the same 
dimension as the original real blocks. The matrix has been expanded (to twice 
the original size) by the multiplication on the left and right. The scale factors 
of α = 0.1 imply that the input/output channels, which the complex uncertainty 
affects, are each scaled down by a factor of 10, giving an overall scaling of the 
complex blocks of 0.01. The µ calculation determines upper and lower bounds 
for robust stability in the uncertain system shown in Figure 4-27.

Figure 4-27:  Replacing Real Uncertainty with Real+Complex Uncertainty

In this process, each real parameter δR has been replaced by a real parameter 
plus a smaller complex parameter (α2δC). Rather than computing robustness 
margins to purely real parameters, the modified problem determines the 
robust stability characteristics of the system with respect to predominantly 
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real uncertainties, though each uncertainty is allowed to have a very small 
complex part. This slight variation in the uncertainty model is easy to accept 
in engineering problems, since models of uncertainty are rarely fixed, and 
small amounts of phase in coefficients of physical models usually can be 
explained by some underlying dynamics that have been ignored. It can also be 
proven that as the parameter α converges to 0, the calculated robustness 
margin, which is a function of α, converges to the robustness margin associated 
with just the original real parameters.

In summary, the modified problem contains both real and complex uncertainty; 
consequently:

• µ with respect to this structure has guaranteed continuity properties.

• The lower bound from mu generally has better convergence behavior.

Moreover, although the modified problem is not equivalent to the original 
problem, it has relevant engineering interpretation and provable convergence 
properties as the complex weighting α goes to 0.

As an example of this, consider the 9 × 9 transfer function M(s), with a robust 
stability uncertainty block structure of

∆R := {diag[δi]i=1,. . .,9 : δi ∈ R},

from the “Space Shuttle Robustness Analysis” section in Chapter 7. Using mu, 
calculate the robust stability of the system in Figure 4-26, and for α = 0.1, 0.2, 
0.3 in Figure 4-27.
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load shut_rs 
minfo(clp_muRS) 
blkrs_R = [-1 0;-1 0;-1 0;-1 0;-1 0;-1 0;-1 0;-1 0;-1 0];
clp_muRSg = frsp(clp_muRS,logspace(-2,2,40)); 
fix1 = [eye(9) ; 0.1*eye(9)]; 
fix2 = [eye(9) ; 0.2*eye(9)]; 
fix3 = [eye(9) ; 0.3*eye(9)]; 
blk_RC = [blkrs_R ; abs(blkrs_R)]; 
m1 = mmult(fix1,clp_muRSg,fix1'); 
m2 = mmult(fix2,clp_muRSg,fix2'); 
m3 = mmult(fix3,clp_muRSg,fix3'); 
[rbnd,rp] = mu(clp_muRSg,blkrs_R); 
[bnd1,rd1,s1,rp1] = mu(m1,blk_RC); 
[bnd2,rd2,s2,rp2] = mu(m2,blk_RC); 
[bnd3,rd3,s3,rp3] = mu(m3,blk_RC); 
allbnds = abv(rbnd,bnd1,bnd2,bnd3); 
vplot('liv,d',sel(allbnds,':',1)) 
title('UPPER BOUNDS: 0%, 1%, 4%, 9% COMPLEX') 
xlabel('FREQUENCY, RAD/SEC') 
ylabel('UPPER BOUND') 
vplot('liv,d',sel(allbnds,':',2)) 
title('LOWER BOUNDS: 0%, 1%, 4%, 9% COMPLEX') 
xlabel('FREQUENCY, RAD/SEC') 
ylabel('LOWER BOUND')
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For each case, the upper bound shows a slight increase as the percentage of 
allowable complex perturbation is increased. This is expected. The lower bound 
behaves similarly, though the introduction of very small complex terms has a 
more dramatic effect. For 0%, the lower bound from mu is zero — the program 
is simply unable to find purely real perturbations which cause singularity. 
However, upon introducing a 1% complex term in each perturbation, the lower 
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bound jumps up to 0.76, indicating mu has found a diagonal perturbation 
causing singularity, with each term of the perturbation having the form δR + 
0.01δC, δR ∈ R, δC ∈ C, and

Using unwrapp, this perturbation can be constructed. For larger values of 
complex contribution, the lower bound is even better behaved, and more closely 
matches up with the corresponding upper bound. Of course, the relevance of 
these nonreal perturbations on the actual robust stability properties must be 
assessed through careful engineering judgement and considerations.

[PacP] contains a more detailed discussion of the continuity properties of mixed 
µ, and the general relationship between the robustness bound in Figure 4-26 
and Figure 4-27.

Finally, in defense of mu — usually, robustness problems involve a performance 
objective, beyond robust stability. This performance objective leads to a full 
complex block in the uncertainty block structure (when calculating robust 
performance tests, the performance block must be a complex block). In those 
cases, the lower bound performance of mu is quite well-behaved, and the small 
complex augmentation to the real blocks is unnecessary. This real perturbation 
problem is explored in detail in the “Space Shuttle Robustness Analysis” 
section in Chapter 7. Also, the robust performance characteristics are 
successfully computed using mu, without adding small amounts of complex 
uncertainty to each real parameter.

δR
1

0.76
----------- δC

1
0.76
-----------≤,≤
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Generalized µ
Generalized µ allows us to put additional constraints on the directions that 
I - M∆ becomes singular. Given a matrix M ∈ Cn×n, and C ∈ Cm×n, find the 
smallest ∆ ∈ ∆ such that

is not full column rank. In terms of a mathematical expression, we write

This quantity can be bounded above easily, using standard µ ideas. Suppose

µ∆(M,C) ≥ β

Then, there is a ∆ ∈ ∆,  and a nonzero vector x such that

(I – ∆M)x = θn, Cx = θm

Hence, for every matrix Q ∈ Cn×m, it follows that

(I – ∆(M + QC))x = θn

so that for every matrix Q ∈ Cn×m, µ∆(M + QC) ≥ β.

By contrapositive, if there exists a matrix Q such that

µ∆(M + QC) < β

then µ∆(M,C) < β.

Hence, we have

I ∆M–

C

µ∆ M C,( ) 1

min σ ∆( ) : ∆ ∆∈ ,rank I ∆M–

C
n<

 
 
 

-----------------------------------------------------------------------------------------------------=:

σ ∆( ) 1
β
---≤

   µ∆ M C,( )    min    µ∆ M QC+( )≤
Q Cn m×∈
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Now, it is possible to compute the optimal matrix Q which minimizes the 
standard upper bound for µ∆(M + QC). The optimization problem can be 
reformulated into an affine matrix inequality, [PacZPB], and solved with a 
combination of heuristics and general purpose AMI solvers. This is how genmu 
computes the upper bound µ∆(M,C).
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Using the mu Software
One of the most important uses of the mu software is to study the sensitivity of 
the calculated robustness properties to the uncertainty models themselves. 
That is, if a particular perturbation’s model is changed from real to complex, 
how significantly does this affect the computed robustness properties? Or, if 
the weighting coefficient on a particular perturbation is increased by 40%, how 
significantly does this impact the computed robustness properties? If the 
change is significant, then the robustness properties are extremely sensitive to 
the uncertainty model (real vs. complex, effective size of the perturbation). The 
appropriate and relevant representation of the uncertainty becomes an issue of 
importance.

From an engineering perspective, one must have confidence in the 
appropriateness of the uncertainty model on which decisions are ultimately 
made. While µ-Tools cannot resolve these questions, careful use of the mu 
software can help you assess the overall robustness of the closed-loop system, 
and give a better understanding of the destabilizing mechanisms that are 
present.
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The structured singular value, µ, is the appropriate tool for analyzing the 
robustness (both stability and performance) of a system subjected to 
structured, LFT perturbations. This is evident from the discussions and 
examples in Chapter 4. In this section, we cover the mechanics of a controller 
design methodology based on structured singular value objectives. We rely 
heavily on the upper bound for µ.
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Problem Setting
In order to apply the general structured singular value theory to control system 
design, the control problem has been recast into the linear fractional 
transformation (LFT) setting as in Figure 5-1.

Figure 5-1  LFT Description of Control Problem

The system labeled P is the open-loop interconnection and contains all of the 
known elements including the nominal plant model and performance and 
uncertainty weighting functions. The ∆pert block is the uncertain element from 
the set ∆pert , which parametrizes all of the assumed model uncertainty in the 
problem. The controller is K. Three sets of inputs enter P: perturbation inputs 
!w, disturbances d, and controls u. Three sets of outputs are generated: 
perturbation outputs z, errors e, and measurements y.

The set of systems to be controlled is described by the LFT

The design objective is to find a stabilizing controller K, such that for all such 
perturbations ∆pert, the closed-loop system is stable and satisfies

Observing Figure 5-2, it is clear that

FL[FU(P,∆pert)K] = FU[FL(P,K),∆pert].

P

�pert

K

w

e d

z

y u

� �

-

�

-

�

FU P ∆pert,( ) : ∆pert ∆pert max,∈ σ ∆pert jω( )[ ] 1≤{ },
ω

||FL[FU(P,∆pert),K]||∞ ð 1.
perturbed plant
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Figure 5-2:  Two Different Views of the Closed Loop

Therefore, the design objective is to find a nominally stabilizing controller K, 
such that for all ∆pert ∈ ∆pert, ≤1, the closed-loop system is 
stable and satisfies

||FU[FL(P,K),∆pert]||∞ ð 1.

Given any K, this performance objective can be checked utilizing a robust 
performance test on the linear fractional transformation FL(P,K). The robust 
performance test should be computed with respect to an augmented 
uncertainty structure,

The structured singular value provides the correct test for robust performance. 
We know from the discussion in Chapter 4 that K achieves robust performance 
if and only if

P

�pert

K

FU (P;�pert)
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y

z
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-
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�

P

�pert

K
FL (P;K)
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z

u

e d� �

-

�

-

�

maxσ ∆pert jω( )[ ]
ω

∆ := 
∆pert 0

0 ∆F

 : ∆pert ∆pert ∆F C
nd ne×

∈,∈

 
 
 
 
 

.

ω
maxµ∆ FL P K,( ) jω( )( ) 1< .
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The goal of µ synthesis is to minimize over all stabilizing controllers K, the peak 
value of µ∆(⋅) of the closed-loop transfer function FL(P,K). More formally,

(5-1)

This is shown in Figure 5-3.

Figure 5-3:  µ Synthesis

ω
min maxµ∆ FL P K,( ) j ω,( )( )

K
stabilizing

� �
��max

!2R
min
K

��

��

�

- K

P
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Replacing  With Its Upper Bound
For tractability of the µ synthesis problem it is necessary to replace µ∆(⋅) with 
the upper bound. In Chapter 4, we saw that for a constant matrix M and an 
uncertainty structure ∆, an upper bound for µ∆(M) is an optimally scaled 
maximum singular value,

Recall that Dx∆ is the set of matrices with the property that D∆ = ∆D for every 
D ∈ D∆, ∆ ∈ ∆.

Using this upper bound, the optimization in equation Figure 5-1 is 
reformulated as

(5-2)

Remember, the D minimization is simply an approximation to µ[FL(P,K)(jω)]. 
Dω is chosen from the set of scalings, D∆, independently at every ω. Hence, we 
have

(5-3)

By D.,Dω ∈ D∆, we mean a frequency-dependent function D that satisfies 
Dω ∈ D∆ for each ω. The general expression  is notated as ||ƒ||∞, 
giving

(5-4)

Consider a single matrix D ∈ D∆, and a complex matrix M. Suppose that U is a 
complex matrix with the same structure as D, but satisfying U*U = UU* = I. 
Each block of U is a unitary (orthogonal) matrix. Recall that matrix 

µ∆ M( )     inf    σ DMD 1–( )≤
D D∆∈

min   max    min    σ DωFL P K,( ) jω( )Dω
1–[ ]

ωK
stabilizing

Dω D∆∈

min              min              max    σ DωFL P K,( ) jω( )Dω
1–[ ]

ωK
stabilizing

D.,Dω D∆∈

maxσ f ω( )[ ]
ω

min           min        DFL P K,( )D 1–
∞

K
stabilizing

D.,Dω D∆∈
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multiplication by an orthogonal matrix does not affect the maximum singular 
value, hence

So, replacing D by UD does not affect the upper bound. Using this freedom in 
the phase of each block of D, we can restrict the frequency-dependent scaling 
matrix Dω of equation Figure 5-4 to be a real-rational, stable, minimum-phase 
transfer function, , and not affect the value of the minimum.

Hence the new optimization is

(5-5)

This optimization is currently solved by an iterative approach, referred to as 
D – K iteration. A block diagram depicting the optimization is shown in 
Figure 5-4.

Figure 5-4:  Replacing µ with Upper Bound

A specific example clarifies some of the ideas. Assume for simplicity that the 
uncertainty block ∆pert only has full, unmodeled dynamics (ie., complex) blocks, 
say, N of them. Then the set ∆pert is of the form

(5-6)

σ UD( )M UD( ) 1–[ ] σ UDMD 1– U*[ ]=

σ DMD 1–( )=

D̂ s( )

min           min        D̂FL P K,( )D̂
1–

∞
K

stabilizing
Dˆ s( ) D∆∈

stable, min-phase

P

K

�

�
D̂

�

�

min
K;D

1

-

�

�

�
D̂
�1

�

�

∆pert diag ∆1 ∆2 … ∆N, , ,[ ] : ∆i C
ri ci×

∈
 
 
 

=
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The set ∆ has the additional fictitious block (for the robust performance 
characterization)

(5-7)

Therefore, the scaling set D∆ is easily seen to be

(5-8)

The elements of D∆, which are defined in Figure 5-8 to be real and positive, can 
be allowed to take on any nonzero complex values and not change the value of 
the upper bound, . Using this freedom in the phase of each 
entry of D, we can restrict the frequency-dependent scaling matrix Dω of 
equation Figure 5-4 to be a real-rational, stable, minimum-phase transfer 
function, . The optimization is now

∆ diag ∆1 ∆2 … ∆N ∆F, , , ,[ ] : ∆i C
ri ci×

∈ ∆F C
nd ne×

∈,
 
 
 

=

D∆ diag d1I d2I … dNI I, , , ,[ ] : di 0>{ }=

infD D∈ ∆
σ DMD 1–( )

d̂ s( )

min

dˆ 1I … 0 0

0 … dˆ NI 0
0 … 0 I

FL P K,( )

dˆ 1I … 0 0

0 … dˆ NI 0
0 … 0 I

1–

∞

K d̂, … …… … … …...
...
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D-K Iteration: Holding D Fixed 
To solve equation Figure 5-5, first consider holding  fixed at a given, 
stable, minimum phase, real-rational . Then, solve the optimization

(5-9)

Define PD to be the system shown in Figure 5-5.

Figure 5-5:  Absorbing Rational D Scaling

It is clear that the optimization in equation Figure 5-9 is equivalent to

Since PD is known at this step, this optimization is precisely an H∞ 
optimization control problem, as covered in Chapter 3. The solution to the H∞ 
problem is well known and involves solving algebraic Riccati equations in 
terms of a state-space model for PD.

D s( )
D̂ s( )

min D̂FL P K,( )D̂
1–

∞
K

stabilizing
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� �
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= P
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D̂
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min FL PD K,( ) ∞
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D-K Iteration: Holding K Fixed 
With K held fixed, the optimization over D is carried out in a two-step 
procedure:

1 Finding the optimal frequency-dependent scaling matrix D at a large, but 
finite set of frequencies (this is the upper bound calculation for µ).

2 Fitting this optimal frequency-dependent scaling with a stable, 
minimum-phase, real-rational transfer function .

The two-step procedure is a viable and reliable approach. The primary reason 
for its success is the efficiency with which both of the individual steps are 
carried out. The µ upper bound is based on a convex optimization problem. For 
this problem, we have developed many heuristics, which when combined with 
standard convex minimization tools leads to a fast, and accurate computation 
of the upper bound.The fitting algorithm, using genphase and fitsys, is based 
on FFT, least squares and again heuristics. It is extremely fast and works well 
in most situations.

Two-Step Procedure for Scalar Entries d of D 
We explain the two-step procedure for the case of scalar entries d of the D 
scaling matrix, as described earlier. The two-step procedure for full-block D 
scalings is covered in the next section.

A stabilizing controller, K(s), is given, and the closed-loop FL(P,K) is formed. At 
each frequency, we solve the minimization corresponding to the upper bound 
for µ.

This minimization is done over the real, positive Dω from the set D∆ defined in 
equation Figure 5-8. This is carried out with µ, in the upper bound 
optimization. Recall that the addition of phase to each di (ω) does not affect the 
value of . In other words, the important aspect of the 
scaling di is its magnitude, |di (jω)|.

D̂

min  σ DωFL P K,( ) jω( )Dω
1–[ ]

Dω D∈

 σ DωFl P K,( ) jω( )Dω
1–[ ]
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Hence, each positive function, di, which is defined on a finite set of frequencies, 
is fit (in magnitude) by a proper, stable, minimum-phase transfer function, 

. This is accomplished as follows: Use the Bode integral formulae to 
determine the phase θi(ω) of the stable, minimum-phase function Li that 
satisfies

|Li(jω)| = di(ω)

for all ω. Then, use the transfer function fitting routine fitsys to construct a 
real-rational transfer function  such that

These rational functions are collected together in a diagonal transfer function 
matrix ,

and absorbed into the original open-loop generalized plant P (to yield PD, as 
described earlier).

Two-Step Procedure for Full D (Optional Reading) 
If there are repeated scalar uncertainty blocks, the corresponding blocks of the 
D matrices are square, full, positive definite Hermitian matrices. Furthermore, 
at frequencies where M(jω) is a real matrix, the optimal scaling matrix D is also 
real. Fitting these requires more care than fitting the scalar d scalings 
described earlier. We describe the approach used in µ-Tools. Suppose that D : 
jR → Cn×n is a continuous function, with:

1

2 D(0) ∈ Rn×n

3

4

Then, under some smoothness assumptions, we do the following. For each 1 ð i 
ð n:

d̂i s( )

d̂i s( )

d̂i jω( ) e
jθi ω( )

di ω( ) Li jω( )=≈
phase magnitude

{ {
D̂ s( )

D̂ s( ) diag d̂1 s( )I d̂2 s( )I,…dˆ F 1– s( )I,I,[ ]=

limω ∞→ D jω( )=:D Rn n×∈

ω∀ R D jω( ),∈ D* jω( ) 0>=

D DT 0>=
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1 Find a stable minimum phase rational function  such that for all ω ∈ R,

2 Define a real-valued function φi : R → R such that

3 For each k = 1,2,. . .,i – 1,i + 1,. . .,n, find rational  (not necessarily stable 
or minimum phase) such that for all ω ∈ R,

Now, put all of these rational functions into a matrix

and define Φ := diag[φi]. If the rational fitting was done accurately, then, for all 
ω

Also,  has no poles on the imaginary axis, and has nonzero determinant 
everywhere on the imaginary axis. Hence, by spectral factorization techniques 
(and the command extsmp), we can find a stable, minimum-phase  and a 
unitary matrix function  such that

for all ω. The stable, minimum-phase rational matrix  is an appropriate 
scaling for the iteration.

ĝi

ĝi jω( ) Dii jω( )≈

e
jθi ω( )

 := 
ĝi jω( )
ĝi jω( )
-------------------

ĝik

ĝik jw( ) e
j∅i w( )Dik jw( )≈

Ĝ s( ) := 

ĝ1 ĝ12 … ĝ1n

ĝ21 ĝ2 … ĝ2n

gn1
ˆ gn2

ˆ … gn
ˆ

……… ...

Ĝ jω( ) ejΦ ω( )D jω( )=

Ĝ

D̂
Û

Ĝ jω( ) Û jω( )D̂ jω( )=

D̂
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Commands for D – K Iteration 
Within µ-Tools there are four ways to perform D – K iteration. They are:

1 Use the graphical user interface dkitgui for automated, adjustable, and 
visual iterations that allow for easy monitoring of progress.

2 Use the script file dkit (improved syntax, algorithms and ease-of-use from 
version 2.0) for automated but adjustable iterations.

3 Use the dkit command in the auto mode to run a specified number of 
iterations in an automatic mode (requires no user intervention).

4 Write your own iteration loop, using commands such as hinfsyn, frsp, mu, 
and msf. This approach is not recommended.
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Discussion
There are two shortcomings with the D – K iteration control design procedure:

• We have approximated µ∆(⋅) by its upper bound. This is not a serious problem 
since the value of µ and its upper bound are often close.

• The D – K iteration is not guaranteed to converge to a global, or even local 
minimum [SteD]. This is a very serious problem, and represents the biggest 
limitation of the design procedure.

In spite of these drawbacks, the D – K iteration control design technique 
appears to work well on many engineering problems. It has been applied with 
success to vibration suppression for flexible structures, flight control, chemical 
process control problems, and acoustic reverberation suppression in 
enclosures.

At this point, we recommend that you proceed to Chapter 7 for examples of the 
iteration.

Reference
[SteD:] Stein, G., and J. Doyle, “Beyond singular values and loopshapes,” AIAA 
Journal of Guidance and Control, vol. 14, num. 1, pp. 5-16, January, 1991.
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Auto-Fit for Scalings (Optional Reading) 
In dkit and dkitgui, there are routines that automatically choose the order of 
the fit. This is done by comparing the effectiveness of the rational fit. For 
simplicity of explanation, consider the situation where all of the uncertainty 
blocks are full, so that the D-scaling matrix is made up of several scalar 
functions, di.

Suppose that the kth scaling dk(ω)is fit with an rth order, stable, minimum 

phase function . The suitability of this rational fit is 

assessed by first defining a scaling matrix

Note that in this matrix we have simply replaced the optimal 
frequency-by-frequency scaling dk (obtained in the µ upper bound computation) 
with the frequency response of the rational fit . Next, we compare the values 
of  

If these are close, then r is deemed a suitable order for the kth scaling function 
dk. The measure of closeness can be chosen. Define

d̂k s( ) e
jθk ω( )

dk ω( )≈

Dk r, ω( ) := 

d1 ω( ) … 0 0 0 … 0

0 0 0 … 0
0 … dk 1– ω( ) 0 0 … 0

0 … 0 d̂k jω( ) 0 … 0

0 … 0 0 dk 1+ ω( ) … 0

…
0 … 0 0 0 … I

...

...

…
… … … ……

d̂k

σ D ω( )FL(P K) jω( )D 1– ω( ),[ ]   and   σ D k r,[ ] ω( )FL(P K) jω( )D k r,[ ]
1– ω( ),[ ]

β := maxσ D ω( )FL(P K) jω( )D 1– ω( ),[ ]
ω R∈
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Our rules are as follows. For frequencies where

we require that

The quantity 1.03 is the AutoTol parameter in dkit, which can be modified 
easily. In dkitgui, the Auto-Fit Tolerance, which is adjustable in the 
Parameter window, varies this parameter from 1.01 (tight) to 1.06 (loose).

For other frequencies, we require that

Note that the order of is chosen based on its performance as a scaling while 
all of the other scalings are set to their optimal (dk(ω)). You can easily modify 
the constants 0.5 and 0.1 to demand tighter tolerance on the auto-fitting 
algorithm.

σ D ω( )FL(P K) jω( )D 1– ω( ),[ ] 0.5β≥

σ Dk r, ω( )FL(P K) jω( )Dk r,
1– ω( ),[ ] 1.03σ D ω( )FL(P K) jω( )D 1– ω( ),[ ]≤

σ Dk r, ω( )FL(P K) jω( )Dk r,
1– ω( ),[ ] σ D ω( )FL(P K) jω( )D 1– ω( ),[ ] 0.1β+≤

d̂k
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This chapter describes three µ-Analysis and Synthesis Toolbox (µ-Tools) 
graphical user interface tools:

• Workspace tool: wsgui 

• D – K Iteration tool: dkitgui 

• Simulation tool: simgui

The functionality and application of these tools is illustrated with a 
multivariable control problem.
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Workspace User Interface Tool: wsgui 
The µ-Tools Workspace Manager, wsgui, is used to view variables in the 
workspace, drag them to other µ-Tools graphical user interface (GUI) drop 
boxes, and export variables from the µ-Tools user interfaces to the workspace. 
In this section we only describe how the tool is used to view the workspace 
variables. In other sections we show how the tool integrates with other µ-Tools 
GUI tools.

Clear the workspace, create the weighting functions used in the Shuttle 
example, and start the Workspace Manager.

clear; mk_wts; wsgui

The wsgui Workspace Manager window appears as in Figure 6-1.

Each time Refresh Variables is pressed, the MATLAB command who is 
executed, and minfo is run to determine the variable type and dimension. This 
information is displayed in the main scrollable table. The date and time of the 
last Refresh are displayed below the button.
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Figure 6-1  Initial wsgui Main Window

The scrollable table can be moved up/down one page by pressing above/below 
the slider. Pressing the arrows at the end of the slider moves the table one line.

A filter is used to make viewing of a reduced number of selections easy. The 
Prefix, Suffix, and matrix type filters are on the bottom of the scrollable 
table. The matrix type filter is a pop-up menu to the right of Suffix. For 
instance, let’s look at SYSTEM matrices whose names begin with w. Type a w 
in the Prefix box, as shown in Figure 6-2. Note that the Apply Selection 
button becomes enabled, yet all 20 matrices in the workspace are still displayed 
(even those that don’t start with a w). The selection filter is only applied when 
you press the Apply Selection button. Move to the right to the pop-up menu, 
which currently displays All, and select System, as shown in Figure 6-2. The 
Apply Selection remains enabled, and again, matrices that are not SYSTEM 
matrices are still displayed. Press Apply Selection to apply the filter (first 
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letter = w, matrix type = SYSTEM). The scrollable table refreshes, leaving 7 (of 
the original 20) matrices displayed, as seen in Figure 6-3.

Figure 6-2:  wsgui Main Window with Selected Options
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Figure 6-3:  wsgui Main Window After Apply Selection

Now, go into the MATLAB command window, and create a new SYSTEM 
matrix, with first letter w

wnew = nd2sys([1 2],[1 2 3 4]);

Note that this does not immediately appear in the scrollable table, even though 
it satisfies the selection criteria. This new variable will not appear until the 
Refresh Variables button is pushed. Press the Refresh Variables button and 
note that when the table is refilled, the system wnew appears as expected, 
Figure 6-4.
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Figure 6-4:  wsgui Main Window

Often, you want to create a more complicated selection criteria. The Custom 
filter can be used to do this. Press the push button marked with a * (to the right 
of the matrix type pop-up menu) to switch to the Custom filter. Lets find all 
matrices with four or more outputs. In the Custom box, type

ynum(mdata)>=4

and press Apply Selection. The results are shown in Figure 6-5. This will 
evaluate the expression in the Custom box, and select those workspace 
variables for which the expression is true. In the Custom box, use mdata to 
indicate the matrix’s value, and mname to substitute the matrix’s name. Hence, 
selections can be based on the name and value of any workspace variable.
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Figure 6-5:  wsgui Main Window with Custom Selection Open

File Menu
The File menu at the top of the Workspace Manager window has three menu 
items as seen in Figure 6-6.

Figure 6-6:  File Menu
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The Clear Selected Matrices item allows you to clear the variable names 
currently appearing in the Workspace Manager window from the MATLAB 
workspace. Upon selecting the Clear Selected Matrices item you are 
prompted with the box shown in Figure 6-7.

Figure 6-7:  Clear Selected Matrices Box

Pressing the Clear push button clears the selected variables from the 
MATLAB workspace. Pressing Cancel cancels this command.

Similarly, the Save Selected Matrices item allows you to save the variable 
names currently appearing in the Workspace Manager window to a MATLAB 
MAT-file. Upon selecting Save Selected Matrices, you are prompted with the 
box shown in Figure 6-8.

Figure 6-8:  Save Selected Matrices Box

You must enter the name of the file in editable text frame in which to store 
these variables. The default filename for the variables to be saved into is 
savefile. Pressing the Save push button saves the selected variables from the 
MATLAB workspace to the filename as defined by the editable text string. 
Pressing Cancel cancels this command. The Quit item quits the workspace tool 
and deletes the Workspace Manager window.
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Options Menu
The Options menu at the top of the Workspace Manager window has three 
menu items, as seen in Figure 6-9.

Figure 6-9:  Options Menu

The CleanUp item redisplays the variable names and data appearing in the 
Workspace Manager window. The other two menu items are Font and # of 
Lines. These items correspond to the font type and number of items shown in 
the workspace window. The Font menu item allows you to select a font size of 
7 to 12 to display the data (see Figure 6-10). The # of Lines menu item allows 
you to select the number of lines of data displayed in the workspace window. 
You can select between [12 20 28 36 44] lines of data. This is especially useful 
since the Workspace Manager window is resizable.

Figure 6-10:  Font and # of Lines Menu Items

Note  You must select the CleanUp item from the Options menu after 
resizing.
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Export Button
The Export button and editable text boxes at the bottom of the Workspace 
Manager window allow you to export data from other µ-Tools user interfaces 
to the MATLAB workspace. The Export button also allows you to copy 
workspace variables, although it is just as easy to do this at the MATLAB 
command line.

Consider the following example of how to copy variables. Select all the 
SYSTEM matrices currently in your MATLAB workspace. To copy the wp 
SYSTEM matrix to the variable TEMP, type wp in the editable text box to the 
right of the Export button and TEMP in the editable text box to the right of As. 
Your Workspace Manager window should correspond to Figure 6-11.

Pressing the Export button copies wp to the variable TEMP in your MATLAB 
workspace. The text display in the message bar shows the MATLAB command 
and the time and date it was executed. Your Workspace Manager window 
should look like Figure 6-12 after the Refresh Variables button is pressed. 
The drop box to the right of the Export button provides another manner to 
deposit information to be copied into the workspace. For more information 
about how to use µ-Tools drop boxes see the “Dragging and Dropping Icons” 
section of this chapter.
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Figure 6-11:  wsgui Main Window with SYSTEMs Selected and Export Data



Workspace User Interface Tool: wsgui

6-13

Figure 6-12:  wsgui Main Window After Refreshing Exported Data



6 Graphical User Interface Tools

6-14

Spinning Satellite Example: Problem Statement
In this section we describe an example application that will be used in the 
following two sections to demonstrate µ-analysis and synthesis methods using 
µ-Tools graphical user interfaces.

Consider a satellite spinning about its z-axis with a control objective to 
minimize the x and y-axes rotations due to x and y-axes disturbances. The 
control inputs are torque actuators in the x and y-axis and the feedback 
measurements are angular sensors. In this example the sensor measurements 
are poorly aligned with the axis of rotation being measured. The poor 
alignment of the sensor measurements is introduced on purpose to illustrate 
the importance of direction in a multivariable control problem.

The following are the linear, state equations of the satellite.

Therefore, the nominal state-space model for the spinning satellite is defined as

d
dt
------
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The spinning satellite has the following characteristics that need to be included 
in the control problem formulation:

• The model of the channel 1 actuator has uncertainty or error of 20% at low 
frequency, below 1 rad/sec. This modeling error reaches 100% uncertainty at 
20 rad/sec with very large potential errors in this actuator model above 200 
rad/sec. We choose to model this in the µ framework as a multiplicative input 
uncertainty. A frequency domain weight is constructed to describe the 
percentage modeling error as a function of frequency. The multiplicative 
uncertainty weight associated with the first actuator is

A frequency response plot of this weight is shown in Figure 6-13.

Figure 6-13:  Uncertainty Weights: Wdel1 (solid), Wdel2 (dashed)
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• The channel 2 actuator has 40% uncertainty at low frequency and the 
uncertainty in this model reaches 100% at 58 rad/sec. The multiplicative 
uncertainty weight associated with this actuator is

A frequency response plot of this weight is shown in Figure 6-13.

• The two sensor measurements are assumed to be noisy. A sensor noise 
weight, Wn, of the form Wn = wnI2×2 is used to model the sensor noise. The 
diagonal structure of the noise weight indicates that there is an equal 
amount of noise in each measurement. The scalar transfer wn function is

Based on this weight at low frequency, below 20 rad/sec, the noise signal has 
a magnitude of ± 0.01radians, at high frequency the noise level reaches a 
magnitude of ± 2.4 radians.

• The desired closed-loop performance is to achieve 100:1 disturbance rejection 
at DC. This can also be interpreted as desiring 1% tracking error at DC. The 
performance objective is the same in each channel. Hence it is represented 
by a diagonal performance weighting function Wp, Wp = wpI2×2. The scalar 
transfer function wp is defined as

This weight also defines a desired closed-loop bandwidth of 2 rad/sec and a 
limit on the peak of the output sensitivity function to a value of 2. A 
frequency response of the performance weighting functions is shown in 
Figure 6-14.

Wdel2 := 10 s 24+( )
3 s 200+( )
---------------------------

wn := 12 s 25+( )
5 s 6000+( )
------------------------------

wp = s 4+
2 s 0.02+( )
-----------------------------
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Figure 6-14:  Performance Weights: Wp (solid), Wn (dashed)

The control design block diagram for the spinning satellite is shown in 
Figure 6-15. The uncertainty weights, Wdel1 and Wdel2, and the performance 
weights, Wp and Wn, are design parameters that you, the control engineer, can 
manipulate. These weights are used to incorporate information about the 
physical system into the control design.

Let P denote this open-loop interconnection. Suppose we order the inputs and 
outputs in P, as shown in Figure 6-16 (each signal represents a vectored valued 
signal with two components).
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Figure 6-15:  Spinning Satellite Interconnection Structure

Figure 6-16:  Spinning Satellite Control Design System

This is a robust, multivariable feedback control problem. The open-loop 
interconnection in Figure 6-15 and Figure 6-16 have several features:

• Uncertainty in each Input Channel (z/w)

• Disturbance and Error at Output of Plant (d/e)

• Sensor Noise on Measurements (n)

The uncertainty block structure for the problem is

∆ := {diag[δ1,δ2] : δ1,δ2 ∈ C}

To create and load the P_ss interconnection structure shown in Figure 6-16, 
type

ssic

at the command line. dkitgui, a graphical user interface for D – K iteration, is 
used to design a robust controller that achieves all of these specifications. 
simgui is used to analyze the time response of the resulting controllers.
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D-K Iteration User Interface Tool: dkitgui
In this section we describe the graphical user interface for µ-synthesis via 
D – K iteration, an approach to robust control design. The GUI-tool for D – K 
iteration is created by the command dkitgui. There are five windows 
associated with this tool:

• Main Iteration window, which is the main interface for the user during the 
iteration.

• Setup window, where initial data is entered.

• Parameter window, which is occasionally used to modify properties of the D 
– K iteration, such as H∞ parameters, and to select the variables that are 
automatically exported to the workspace each iteration.

• Frequency Response window, where the plots of µ and  of the closed-loop 
transfer function matrix are displayed.

• Scaling window, where the rational fits of the frequency-dependent D-scale 
data are shown, and can be modified.

The spinning satellite control design example from the previous section is used 
to illustrate the basic features of dkitgui. Start the tool by typing

dkitgui

Depending on the computer, dkitgui takes up to a minute to start. The main 
interactive window finally displays the message

Press SETUP to begin

in its lower left corner, as shown in Figure 6-17. This is the location of the 
message bar where information about the D – K iteration is displayed.

σ
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Figure 6-17:  Initial dkitgui Main Window

Press the SETUP button as instructed. This brings the Setup window to the 
foreground. The Setup window is shown in Figure 6-18.
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Figure 6-18:  Initial dkitgui Setup Window

To start an iteration, you must enter the following items:

• Open-loop interconnection structure

• Number of uncertainty blocks

• Sizes of the uncertainty blocks

• Sizes of the performance transfer functions (errors and disturbances)
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• Sizes of the feedback signals (measurements and controls)

• Frequency response range

You can enter this information in any order, except that the dimensions of the 
uncertainty blocks can only be specified after entering the number of 
uncertainty blocks. All data entry points are uicontrol editable text objects, 
and operate in a machine dependent manner with which you should be 
familiar. As before, when we instruct you to enter data in an editable text 
object, this implicitly means enter the text, and complete the action (by 
pressing Return, by pressing the mouse on another object, by moving the 
mouse pointer out of the text object, etc.). See the MATLAB Function Reference 
online for more details on completing a text entry.

Notice that three items in the Setup window — Controller, Iteration 
Suffix, and Iteration Name — are enclosed in < >. This notation denotes a 
variable that is optional, and no action is necessary.

Enter P_ss (the open-loop interconnection) in the open-loop editable text frame 
(see Figure 6-19). Press the Open-Loop IC checkbox to load the data into the 
Open-Loop IC variable. The pointer turns into an hourglass while MATLAB 
loads the data. Upon loading the data, the pointer turns back into an arrow, 
and the matrix type (S for System, C for Constant, and V for Varying) of the 
Open-Loop IC variable and its dimensions are displayed to the right of the 
editable text. In this example the variable P_ss is a SYSTEM matrix with six 
outputs, eight inputs, and eight states. The <Controller> data is optional. 
This allows you to load an initial controller to start the D – K iteration or during 
the D – K iteration you may want to load a reduced order controller.

Figure 6-19:  Open-Loop/Controller Input Frame

Since there are two uncertain actuators in the spinning satellite problem, the 
uncertainty structure has 2, 1-by-1 uncertainty blocks. Enter a 2 in the 
Uncertainty Structure # of Blocks text field. This opens a 2-by- 3 editable 
matrix, as seen in Figure 6-20, where the dimensions of the uncertainty blocks 
are entered. Enter a 1 for each row and column dimension. The third column, 
labeled Fac, is used for scaling the size of the uncertainty during the iteration. 
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The value of Fac may be varied from.1 to 10, effectively reducing or increasing 
the size of the uncertainty by a factor of 10. Leave these factors as 1 for the time 
being.

Figure 6-20:  Uncertainty Structure Frame

In the spinning satellite problem (Figure 6-16), there are four exogenous 
disturbances (two disturbance torques and two measurement noises) and two 
penalized errors (two tracking errors). Enter a 2 in the # of Errors editable text 
and a 4 into the # of Disturbances editable text in the Performance 
Structure frame. The spinning satellite has two measured variables for 
feedback and two control actuators. Enter these in the # of Measurements and 
# of Controls editable text, respectively, in the Feedback Structure frame.

Drop Box Data
In the right column of the Setup window are push buttons with the variables 
names Uncertainty, Performance, Feedback, and Omega, as seen in 
Figure 6-21.

Figure 6-21:  Uncertainty, Performance, Feedback, and Omega Frame

Entering data with these push buttons is optional. These push buttons are 
used to enter the same data as SIGNAL DIMENSIONS and Frequency Range 
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data. To the left of each push button is a drop box and to the right of each push 
button is an editable text box. Data that is dropped into the drop boxes or 
entered in the editable text overwrites the data in the left column of the Setup 
window. (See the “Dragging and Dropping Icons” section at the end of this 
chapter for more details.) For example, instead of entering a 2 into the # of 
Blocks text and 1, 1, 1, and 1 into each block structure, you could type 
ones(2,2) in the Uncertainty editable text and press the Uncertainty push 
button. This action overloads this data into the Uncertainty Structure by 
redrawing the Uncertainty Structure frame and filling out the corresponding 
editable text locations. Similarly the Performance data overwrites the 
Performance Structure data, Feedback overwrites the Feedback Structure 
data, and Omega overwrites the Frequency Range data.

Completing Problem Setup
To complete the problem setup, enter the frequency response information 
appropriate for the problem in the Frequency Range frame. Keep the 
Logspace option, and enter 0.001 for the Low frequency, 100 for the High 
frequency, and 60 in the # Points editable text. Selecting the Custom option 
allows you to enter any valid MATLAB expression in the editable text frame.

This completes the input of the data required by dkitgui to start a D – K 
iteration. Upon correctly entering the required data, the message

Mu-Synthesis Problem Specification Complete...

appears in the message bar of the Main window.

Enter text in the optional fields Iteration Suffix and Iteration Name. 
Iteration Suffix is used for data that is automatically exported to the 
workspace. This string is appended to default names for the variables as they 
are exported to the workspace. Enter ss in the editable text suffix box. We will 
see the precise effect of this later in the example. The Iteration Name modifies 
the title of each figure. Enter Spinning Satellite in the editable text frame, 
and notice its effect. The Setup window should appear as in Figure 6-22.
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Figure 6-22:  dkitgui Setup Window After Entering Data

To continue with the D – K iteration, first hide the Setup window. This is done 
by pulling down the Window menu and selecting Hide Setup from the menu 
and returning to the main window. Now select the Parameters window from 
the Window menu.
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D-K Iteration Parameters Window
The fifth window titled Parameters, shown in Figure 6-23, contains additional 
data you may want to enter for the D – K iteration. This window is shown if 
Parameters is selected from the Windows menu. All of the parameters in this 
window are set to default values. No data entry is required and you can return 
to the main Iteration window to initiate the first iteration. The Parameters 
window contains five settings you can change. They are:

• HinfSyn Parameters 
• Structured Singular Value (Mu) 
• Riccati Solver 
• D-Scale Prefit 
• Each Iteration Export

Figure 6-23:  D – K Iteration Parameter Window
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The HinfSyn Parameters and Riccati Solver settings, shown in the table 
below, correspond to the inputs of the H∞ control design program hinfsyn. 
Gamma Min and Gamma Max are the minimum and maximum γ values.

The Suboptimal Tol is how close to the optimal γ value is desired. The 
Imaginary Tol and Positive Def Tol are epr and epp in the hinfsyn program. 
They correspond to the measure of when the real part of an eigenvalue of the 
Hamiltonian matrices is zero and determination of the positive definiteness of 
the X∞ and Y∞ solutions. The current default value for each parameter is shown 
in parentheses, ( ), to the right of each label. The Riccati Solver has a mutually 
exclusive set of buttons for selecting either the Schur or Eigenvalue method to 
be used to solve the H∞ Riccati equations.

The HinfSyn Parameters frame also allows you to deselect the measurements 
and controls used during the control design process. For the spinning satellite 
example there are two controls and two measurements. The Measurements 
Utilized frame indicates that all measurements are currently being used. You 
can input to the Measurements Utilized editable text a standard MATLAB 
vector to denote the measurements that are to be used. Similarly, you can 
select in the Controls Utilized frame which control inputs are to be used. The 
resulting control design will have zeros in the state space B or C matrix of the 
controller corresponding to the measurements inputs or control outputs that 
have been deselected.

The Structured Singular Value (Mu) settings frame has two sets of options. 
These options correspond to calculation of the structured singular value (µ) 
using the mu program during D – K iteration. The first set of buttons is 
mutually exclusive. You can either select to use greatest accuracy or a less

Hinfsyn Parameters Riccati Solver

Gamma Min Schur Method

Gamma Max Eigenvalue Method

Suboptimal Tol

Imaginary Tol

Pos Def Tol
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accurate but faster technique for calculating µ. (The Optimal method calls the 
mu program with the option ’c,’ Fast method calls mu with the ’f’ option). You 
can also select to calculate only an upper bound for µ which calls mu with the ’U’ 
option. Selecting this option speeds up the µ calculation, but you will be unable 
to see how different the upper and lower µ bounds are when they are calculated 
and plotted in the Mu/SVD Plot window.

The D-Scale Prefit frame contains settings for calculation of the rational 
D-scales. The Max Auto-Order defines the maximum D-scale state order to be 
used to fit an individual D-scaling during the prefitting part of the D-scales 
fitting routine. The Max Auto-Order default is five states. The Auto-Fit 
Tolerance scroll bar allows you to define how close the rational scaled µ upper 
bound is to approximate the actual µ upper bound in a norm sense. Selecting 
Loose will result in lower order D-scales being used in the D-scale prefitting, 
whereas selecting Tight will likely result in higher order D-scales during the 
D-scale prefit computation. This setting can play an important role in 
determining which minimum of the D – K iteration is achieved. Currently this 
is done by trial and error.

The Each Iteration: Export... frame shows data in the form of radio buttons 
that is available to be exported to the MATLAB workspace. In the following 
list, a subscript i denotes that the integer iteration number is added to the 
variable’s name. These variables are:

• Controller, which is exported as Ki.

• Mu Analysis exports mubndi, ddatai, dsensi, and perti. The mubndi variable 
is selected based on the Structured Singular Value (Mu) frame. This is 
normally the upper and lower bounds for µ. The ddatai is the D-scale data, 
dsensi is the sensitivity, and perti is the worst-case perturbation as a 
function of frequency. These are the standard outputs of the mu function.

• Closed-Loop Freq Response exports the closed-loop system, clpi, and its 
frequency response clpig.

• Rational D-scalings exports the left, dli, and right, dri, rational D-scalings.

• Open-Loop Interconnection is exported as olici.

The Iteration Suffix string, which was input in the Setup window, is appended 
to the end of all the output variables selected in the Each Iteration: Export... 
frame. In this example, the Controller and the Mu Analysis data is selected 
for output. Therefore after the Control Design button executes for the first 
time, the variable K1ss will be in the workspace.
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Hide the Parameter window and return to the main D – K iteration window to 
continue this example. This can be done by simply pulling down the Window 
menu and first selecting the Iteration option. This moves the main Iteration 
window into the foreground. The main window is now shown in Figure 6-24. Go 
back to the Parameter window, pull-down the Window menu, and select Hide 
Parameter to hide the Parameter window.

Figure 6-24:  Main D – K Iteration Window After All the Data Is Specified
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D-K Iteration
The main window has (at this point) five significant items: 

• Five push buttons, whose actions constitute the D – K iteration. Recall, the 
D – K iteration pertains to the picture shown below, and is

- Hold D fixed, design K to minimize H∞ norm.

- Then, hold K fixed, and find the new optimal D scalings.

- Go to Step 1.

• A read-only DK Iteration Summary table.

• A menu bar with File, Iteration, Options and Window menus.

• A scrollable list of linkable variables that can be dragged from this tool into 
other tools’ drop boxes.

• A message bar.

The scrollable list of linkable variables includes the D – K iteration variables.

Linkable Variables Meaning 

Khinf H∞ controller 

Kuse Controller K used in the current 
D – K iteration. 

Blk Block structure for µ calculation 

Ydim Output dimension of the controller 

Udim Input dimension of the controller 

IC Open-loop interconnection structure 

PD
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These variables can be dragged and dropped at anytime into other µ-Tools user 
interface commands.

The Control Design push button is enabled, and is the first step of the 
iteration. At this point, the D matrices are set to identity (of appropriate 
dimension). Design the first H∞ controller by pressing the Control Design 
button. The standard gamma iteration data from hinfsyn is displayed in the 
MATLAB command window. The DK Iteration Summary table is updated at 
the end of the control design, and the Form Closed-Loop button is enabled.

The next two steps are simple — form the closed-loop system, and calculate 
closed-loop frequency response. Press the Form Closed-Loop and Frequency 
Response buttons as they are enabled. As the frequency response of the 
closed-loop system is calculated, a running tab of the number of frequency 
points calculated is shown in the message frame of the main window. The norm 
of the closed-loop transfer function as a function of frequency is plotted in the 
Frequency Response window as seen in Figure 6-25. (Note that Figure 6-25 
includes the µ plot, which is not accurate at this point in the D – K iteration.) 
In general, this transfer function has the D-scalings from the previous iteration 
(for the first iteration it’s just identity) and the controller which was just 
designed. Upon completing the frequency response the Compute Mu button is 
enabled.

Now, compute the structured singular value, µ, of the closed-loop frequency 
response by pressing the Compute Mu button. The block structure was defined 
in the Setup window, in the Block Structure field. Recall (see Chapter 4) that 
the upper bound for µ is computed by determining the optimal D-scalings as a 
function of frequency. Like the frequency response, a running tab of the µ 
calculation is shown in the message frame of the main window. The results are 
shown in Figure 6-25.

Clpg Closed-loop frequency response 

Clpg Closed-loop system

Linkable Variables Meaning 
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Figure 6-25:  µ Upper Bound and Maximum Singular Value for First D – K 
Iteration

You have now completed one D – K iteration. The DK Iteration Summary table 
is completely updated for the first iteration, as shown in Figure 6-26. The Next 
Iteration button is highlighted. Once the Next Iteration button is pushed you 
cannot effectively return to the previous iteration.

Suppose you desire a more refined frequency response for the µ calculation. 
You can do this before you move to the second iteration by changing the data 
in the Frequency Range frame in the Setup window. Changing the number of 
frequency response points from 60 to 80 results in the <Frequency Response> 
button being enabled. Note that the sideways carrots < > around the button 
name denote that you may select the frequency response or go to the next 
iteration. Continuing to the next iteration without pressing the Frequency 
button will not change any of the data calculated during the first iteration.



D-K Iteration User Interface Tool: dkitgui

6-33

Figure 6-26:  D – K Iteration Summary After First Iteration

Pressing the Next Iteration button results in the D-scale data output from the 
µ calculation being fit with rational D-scales. In the spinning satellite example, 
there are two uncertainty blocks and one performance block, therefore, there 
are two D-scales to be fit. A table entitled D Scaling Order appears in the main 
D – K iteration window, as shown in Figure 6-27. The table contains the scaling 
number and the order of each scaling. Each D-scale data is prefit with up to a 
maximum state order transfer function in an attempt to minimize the 
difference between the scaled µ upper bound and the µ upper bound with the 
rational D-scales. The maximum order of the prefit D-scales is specified in the 
D-Scale Prefit field, with the Max Auto-Order data in the Parameters 
window.

Figure 6-27:  D-Scalings Order Table

The D-scaling information for the first D-scaling is shown in graphical form in 
the Scaling window, Figure 6-28. Note that the first D-scaling was fit with a 
first order transfer function (see Figure 6-27). There are three plots shown in 
this window. The top plot shows the µ upper bound, which contains the 
D-scaling data, and a plot of the scaled upper bound. The scaled upper bound 
is calculated with the rational D-scales wrapped in to the original closed-loop 
frequency response. The middle plot shows the D-scale magnitude data and the 
rational fit for the first D-scale. The D-scale magnitude data is the variable 
being fit. The bottom plot shows the sensitivity of the µ upper bound to changes 
in the D-scale. The larger the sensitivity, the more important it is to fit the 
D-scale well in that frequency range.
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Figure 6-28:  D-Scalings for Second Iteration

You can change which D-scale data is shown in the Scaling window by pressing 
the ’- -’ or ’++’ buttons to the left of the Scaling title. This will cycle through 
each of the D-scalings. The ’- -’ or ’++’ buttons to the left of the Order title 
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decrement or increment the order of the D-scale fit by 1. You can also change 
the order of the D-scale fit by editing the D-scale order directly. Changing the 
D fit order will affect the middle plot, which shows the magnitude data (solid 
line) and the rational fit (dashed line) and will also affect the current scaled 
upper bound (dashed line) shown in the top figure of the Scaling window. Note 
that the goal of D – K iteration is to reduce the µ upper bound. It is usually 
important that the current scaled upper bound, which incorporates the rational 
D-scalings, closely matches the calculated µ upper bound. This is especially 
true in the frequency range where µ is large.

The D-scale data for this example are both fit with first order transfer 
functions. These fits appear to be sufficient, therefore we will go on to the 
second control design. Pressing the Control Design button wraps the rational 
D-scalings into the original interconnection structure, P_ss, and designs a new 
H∞ controller. For this second D – K iteration, a γ value of 7.89 is achieved.

We now desire to run the next three buttons in sequence. This can be done by 
pulling down the Iteration menubar in the main Iteration window. Selecting 
Auto Steps, dragging the mouse to the right of Auto Steps allows you to choose 
the menu item Next 3 Steps, as shown in Figure 6-29. This automatically runs 
the next three steps of the D – K iteration. Selecting either the Auto Steps or 
Auto Iterate will result in the appearance of a Stop button in the main 
Iteration window below the DK Iteration Summary table. Pressing the Stop 
button terminates the automated D – K iteration after the current button 
running has completed.

Figure 6-29:  Main Window Iteration Pull-Down Menu

Under the Iteration menu, the Restart option allows you to restart a D – K 
iteration at the very beginning while leaving the Setup window data intact. 
This is often useful if the incorrect weights were selected and you would like to 
reload the system interconnection structure and start over.
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Note that after two complete D – K iterations we have achieved a µ value of 2.11 
(Figure 6-30). The objective is to achieve a µ value less than 1. Therefore, 
several more D – K iterations may be required. User interaction can be 
eliminated from the D – K iteration by selecting the Auto Iterate menu item 
from the DK Iteration window, Iteration menubar, as shown in Figure 6-31. 
Dragging the mouse to the right of the Auto Iterate menu item allows you to 
select up from one to eight automated D – K iterations. During each iteration, 
the rational D-scale order is selected automatically by the dkitgui program. 
Again, the Stop button allows you to terminate the Auto Iterate option at any 
time. After three complete D – K iterations, a µ value of 1.03 is achieved. 
Selecting one more automated D – K iteration results in a µ value of 0.91 after 
four iterations (Figure 6-32).

Figure 6-30:  D – K Iteration Summary After Two Iterations

Figure 6-31:  Main Window Iteration Pull-Down Menu
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Figure 6-32:  D – K Iteration Summary After Four Iterations

Based on the setting of the Each Iteration Export radio buttons in the 
Parameter window, the controller designed each iteration has been exported 
to the MATLAB workspace. Therefore, after four D – K iterations controllers 
K1ss, K2ss, K3ss, and K4ss are present in your workspace. We also have data 
from the µ analysis, ddataiss, desnsiss, mubndiss, and pertiss in the 
workspace. If you have your Workspace Manager open, press the Refresh 
Variables button. The results are shown in Figure 6-33.
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Figure 6-33:  Data in the MATLAB Workspace After Four D – K Iterations

We have successfully designed a controller to achieve our objectives since µ is 
less than 1. To quit the D – K iteration graphical user interface, pull down the 
File menu from the main Iteration window and highlight the Quit option.
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Options Menu
The Options menu in the main dkitgui window allows you to perform two 
specialized operations. Selecting the Auto_Refresh K item from the Options 
menu will refresh the <Controller> editable text in the Setup window after 
successful completion of the Control Design button. Any valid MATLAB 
expression can be typed in the <Controller> editable text space. This allows 
you to perhaps have an automated controller reduction scheme that would get 
executed after the design of the H∞ controller.

Figure 6-34:  D – K Options Menu

Selecting the Auto_Refresh Olic item from the Options menu will refresh the 
Open-Loop IC editable text in the Setup window after successful completion 
of the fitting the D-scale data. Any valid expression can be typed in the 
Open-Loop IC editable text space. This allows you to have an automated 
program that modifies the open-loop interconnection weightings based on the 
value of µ from the previous iteration.
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LFT Time Simulation User Interface Tool: simgui
The GUI tool for time simulations is created by the command simgui. simgui 
has two interface windows and up to six plot windows:

• Main Simulation Tool window, which is the main interface for the 
simulation.

• Parameter window, which is used to modify properties of the time 
simulation, such as the final time, integration step size, initial conditions, 
and variables automatically exported to the workspace.

• Plot windows, where the plots of time responses are displayed. You can open 
up to six of these windows.

Spinning Satellite Example: Time Simulation
Several controllers for the spinning satellite example have been designed in the 
previous dkitgui section. We will modify the spinning satellite open-loop 
interconnection shown in Figure 6-15, to include additional outputs for 
simulation purposes. Let Ptss denote this new open-loop interconnection, with 
the inputs/outputs in Ptss, as shown in Figure 6-35 (each signal shown below 
represents a vectored valued signal with two components).

Figure 6-35:  Time Simulation Interconnection System: Ptss
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Two controllers to be analyzed are K1ss and K4ss. K1ss is the controller design 
from the first D – K iteration and K4ss was designed in the fourth D – K 
iteration. They are either present in your current workspace or they can be 
loaded by typing

load ss_cont 

at the command line. The function simgui will be used to analyze the time 
response of these controllers. Typing the command tssic creates and loads the 
Ptss interconnection structure.

tssic

Setting Up simgui
Start the linear fractional transformation (LFT) time simulation tool by typing

simgui

Depending on the computer, this takes up to a minute to start. The message

Setting up simulation GUI....

appears in the lower left corner of the main window. This is the location of the 
message bar where information about the time simulation is displayed. Upon 
completion of the simgui setup, the main window displays the message

Done with setup

in the message bar, as shown in Figure 6-36.
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Figure 6-36:  Initial simgui Main Window

The simgui tool simulates linear fractional models and plots their responses. 
simgui is based on the standard linear fractional model shown in Figure 6-37.

Figure 6-37:  Standard Linear Fractional Model
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The P block corresponds to the open-loop plant interconnection model, referred 
to as the Plant in simgui. The K block corresponds to a state-space controller, 
Controller in simgui. The ∆ block corresponds to the perturbation to the 
model, Perturbation in simgui. The Input Signal to the time simulation is 
denoted by d. The individual systems are formed using the starp command. 
The time simulation outputs available for plotting correspond to the variable e. 
Three types of simulation are possible: continuous-time (default) using trsp, 
discrete-time using dtrsp and sample-data using sdtrsp. In this example, we 
discuss the continuous-time simulation. This requires the open-loop 
interconnection, Plant, Controller, and Perturbation to be continuous-time 
systems, or constants.

To start the time simulation, you must at least enter the following items:

• Open-loop plant interconnection model, Plant

• Input excitation time signal, Input Signal

If this is the only data entered, the input dimension of the Plant matrix must 
match the row dimension of the Input Signal VARYING or CONSTANT 
matrix. In addition you can enter a:

• Controller
• Perturbation

Note  The dimensions of the respective systems and inputs corresponding to 
those in Figure 6-37 must match one another. If they do not match one 
another, simgui will display an error message in the message bar.

The Plant, Controller, Perturbation, and Input Signal variables can be 
entered in any order. For this example enter P_tss (the open-loop 
interconnection) in the Plant text entry, (see Figure 6-36), and press the Plant 
push button to load the plant data. The MATLAB pointer turns into an 
hourglass while MATLAB loads the data. After the data is loaded, the 
MATLAB pointer turns back into an arrow, and the Plant data matrix type (S 
for System, C for Constant, and V for Varying) and its dimensions are 
displayed to the right of the Plant text entry box. Similarly, enter K1ss in the 
Controller text entry and press the Controller push button. K1ss was one of 
the controllers loaded with the load ss_cont command. Enter [0.1 0;0 
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-0.1]) in the Perturbation text entry and press the Perturbation push 
button.

Plant, Perturbation, and Controller correspond directly to P, ∆, and K in 
Figure 6-37. Based on the dimensions of these matrices, the Input Signal must 
have four rows of signals for the system to have the correct dimensions. An 
error message will be displayed if the dimensions of the interconnected system 
are incorrect. The resulting closed-loop, perturbed system has a total of eight 
outputs. They are e, y, d, and u, as shown in Figure 6-35.

Let’s create an input signal for the spinning satellite example. The first two 
inputs are disturbances, and the third and fourth inputs are sensor noise. For 
this example, input a unit step command into channel 1, zero input to channel 
2, and a normally distributed random noise signal into channels 3 and 4 which 
is scaled by 0.05. Typing the following commands at the MATLAB prompt will 
generate this input signal.

u1 = step_tr(0,1,.01,5); 
u2 = mscl(u1,0); 
t = getiv(u1); 
u34 = siggen('0.05*randn(2,1)',t); 
u = abv(u1,u2,u34); 

Enter u in the Input Signal text entry and press its push button. The 
successful entry of the input signal results in the appearance of the Plots and 
Line Types scroll table in the main simulation window, as shown in 
Figure 6-38.
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Figure 6-38:  Main Simulation Window with Data
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Plots and Line Types Scroll Table
The Plots and Line Types scroll table allows you to select the time responses 
and outputs desired. The four checkboxes on the left side of the scroll table 
correspond to the four time simulations that can be performed:

• Open-Loop Nominal: response of the open-loop plant, Plant, without a 
controller or perturbation included. 

• Open-Loop Perturbed: response of the open-loop plant, Plant, with the 
perturbation, Perturbation, included but no controller. 

• Closed-Loop Nominal: response of the closed-loop plant, 
starp(Plant,Controller), without the perturbation included. 

• Closed-Loop Perturbed: response of the closed-loop plant, 
starp(Plant,Controller),with the perturbation, Perturbation, included.

Currently each checkbox name is enclosed by ( ). This indicates that the time 
response data for these four is either not current or does not exist. Also each 
button is not highlighted and no line type data appears in the scroll table. This 
indicates that currently no time response data is desired. Pressing the 
Open-Loop Nominal and Closed-Loop Nominal checkboxes enables the 
Compute button and Ready to Simulate appears in the message bar. This 
action also displays the checkboxes associated with the Open-Loop and 
Closed-Loop Nominal responses.

The scroll table contains information corresponding to the eight outputs. The 
scroll bar at the bottom of the table (see Figure 6-39) allows you to scroll the 
table to select or deselect output channels. The scroll table contains the four 
response types and output channels and line type information corresponding to 
these outputs. Each response and output channel has a corresponding 
checkbox. The Plots and Line Types scroll table also has a pull-down button 
to denote the Grouped or Free Form operation of the checkboxes (see 
Figure 6-40). The default is Grouped, which means that only one output 
channel, and all four types of responses, are selected when an output checkbox 
is pressed. Initially the first output checkboxes of the selected responses are 
enabled. Therefore, currently in this example, pressing the Compute button 
would result in the first output of the Open-Loop and Closed-Loop Nominal 
responses being plotted in the Plot Page #1.
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Figure 6-39:  simgui Plots and Line Types Scroll Table

Figure 6-40:  Grouped/Free Form Button

Leaving the Grouped pull-down menu selected, as seen in Figure 6-40, and 
pressing the third output of the Closed-Loop Nominal response results in the 
third output of all four responses being selected. Therefore, currently in this 
example, this would result in the third output of the Open-Loop and 
Closed-Loop Nominal responses being plotted in the Plot Page #1. The Free 
Form option decouples the responses. Pressing on any output channel 
checkbox only selects or deselects that checkbox.

The text in the checkbox corresponds to a MATLAB color type, next to a 
MATLAB line type. For example, the default line types and colors for a color 
monitor are: Open-Loop Nominal outputs are yellow (y) and solid lines (–). 
Closed-Loop Nominal outputs are magenta (m) and dotted lines (:).

The LineStyle menu provides a way of modifying the line color and type 
(Figure 6-41). Selecting edit from the LineStyle menu changes the checkboxes 
into uicontrol editable text objects, and operates in a machine dependent 
manner with which you should be familiar. As before, when we instruct you to 
enter data in an editable text object, this implicitly means enter the text, and 
complete the action (by pressing Return, by pressing the mouse on another 
object, by moving the mouse out of the text object, etc.). See the online 
MATLAB Function Reference for more details on completing a text entry.
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Figure 6-41:  LineStyle Pull-Down Menu

You can modify the first output of the Closed-Loop Nominal channels to be 
white (w) and dashed (--), as shown in Figure 6-42.

Figure 6-42:  Modified Plots and Line Types Scroll Table

Press the Done Edit button in the top right corner of the Plots and Line Types 
table to return the table to checkboxes for output selection. The Default 
selection of the LineStyle menu provides four different line type defaults:

• Color 

1 Open-Loop Nominal outputs: yellow, solid (y-) 
2 Open-Loop Perturbed outputs: red, dashed (r--) 
3 Closed-Loop Nominal outputs: magenta, dotted (m:) 
4 Closed-Loop Perturbed outputs: white, dashed-dotted (w-.) 

• B/W (Black and White) 

1 Open-Loop Nominal outputs: white, solid (w-) 
2 Open-Loop Perturbed outputs: white, dashed (w--) 
3 Closed-Loop Nominal outputs: white, dotted (w:) 
4 Closed-Loop Perturbed outputs: white, dashed-dotted (w-.) 
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• Color Symbols 

1 Open-Loop Nominal outputs: yellow, x (yx) 
2 Open-Loop Perturbed outputs: red, star (r*) 
3 Closed-Loop Nominal outputs: magenta, plus (m+) 
4 Closed-Loop Perturbed outputs: white, circle (wo) 

• B/W (Black and White) Symbols 

1 Open-Loop Nominal outputs: white, x (wx) 
2 Open-Loop Perturbed outputs: white, star (w*) 
3 Closed-Loop Nominal outputs: white, plus (w+) 
4 Closed-Loop Perturbed outputs: white, circle (wo)

Plotting Window Setup and Titles
The output data selected in the scroll table is displayed in a single plot 
determined by the information in the Current Plotting Figure Information 
frame, as shown in Figure 6-44. You can format up to six pages (MATLAB plot 
figures) to display output data. The simgui tool initializes to have one plot page 
(figure) and one set of plot axes on that page, as shown in Figure 6-43. Setup of 
the plotting pages and titles are controlled via the Current Plotting Figure 
Information frames in Figure 6-44.
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Figure 6-43:  Simulation Plot Page #1

Figure 6-44:  Plotting Data Frames and Titles

The Plot Figure frame, Plot Fig#, corresponds to the plotting window number 
displayed. There can be a maximum of six plotting windows. Pressing the 
increment ++ and decrement -- buttons changes the page number and brings 
the new plot window to the foreground. If the page number is incremented to a 
page that previously didn’t exist, a new page is created with one plot axes. You 
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can also change the Plot Fig# editable text to reflect the plot page desired. The 
input to this editable text must be a positive integer between 1 and 6.

The row number, Row# frame, has two editable texts and a decrement -- and 
increment ++ button as seen in Figure 6-44. The far right editable text, after 
of, corresponds to the number of subplot axes rows desired for the current page 
(Plot Fig#). The first editable text, after Row#, indicates the row number of the 
corresponding subplot on the given Plot Fig#. The minimum Row# editable 
text value is 1, and its maximum values correspond to the value shown in the 
second editable text of Row#. The increment and decrement buttons increase 
or decrease the row number by 1. This is shown in the first Row# editable text. 
The minimum row number is 1 and the maximum is the value of the second 
Row# editable text.

Similarly, the column number, Col# frame, has two editable texts and a 
decrement -- and increment ++ button (see Figure 6-46). The second editable 
text, after of, corresponds to the number of subplot axes columns desired for 
the current page (Plot Fig#). The first editable text, after Col#, indicates the 
column number of the corresponding subplot on the given Plot Fig#. The 
increment and decrement buttons increase or decrease by 1 the column number 
shown in the first Col# editable text. The minimum column number is 1 and 
the maximum is the value of the second Col# editable text.

For example, selecting the second editable text of Row# to be 2 and Col# to be 
3 would result in six subplots, two rows of three columns. Changing either the 
second editable text of Row# or Col# will display the result in a push button 
label Apply, appearing in the right of these two frames, as shown in 
Figure 6-44. The new desired subplot description is applied after this button is 
pushed. As before, the inputs to the editable text frames must be positive, 
nonzero integers.

The Plot Fig# and the second editable text frames of the Row#/Col# frames 
indicate the layout of the current simulation plot page. The Plot Fig#, and first 
editable text of the Row#, and Col# frames indicate which plot data is 
currently in the Plots and LineTypes scroll table and their corresponding plot 
labels and fonts. The first editable text in the Row# and Col# frames indicate 
the row and column number of the corresponding subplot in the Plot Fig#. The 
minimum first editable text values of Row#, and Col# are 1, and their 
maximum values correspond to the values shown in the second editable text 
frames in Row# and Col# respectively. In this example, let’s include two plots 
on the first page, Plot Fig# 1, one above the other. Enter a 2 in the # of rows 
editable text frame and press the Apply button, as seen in Figure 6-45.
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Figure 6-45:  Current Plotting Figure Information with Apply Button Enabled

Increment Row# to 2 to indicate the bottom plot.

The remaining seven editable text frames and pull down button correspond to 
labeling and marking the subplot denoted by the data in the Plot Fig#, and the 
first editable text in the Row#, and Col# frames. The editable text string 
associated with the Title frame is the same as a string entered using the 
MATLAB title command for the given subplot. The font size of the title can 
be entered to the right of the Title frame editable text. The default font size for 
all the labels is 10. Input to the font editable text must be a positive integer. 
Similarly the Xlabel and Ylabel editable text strings correspond to the 
MATLAB xlabel and ylabel commands. The axes font editable text allows 
you to change the font of the subplot axes fonts. This data is restricted to be a 
positive, nonzero integer. The button labeled Grid Off toggles between Grid 
Off and Grid On for the current subplot.

For the top subplot in the current example, enter Plant Error Output 1 in the 
Title editable text, an x-axis label of Time and a y-axis label of Degrees. Select 
the font size to be 13 for all the text and the axes, grid off. Select output 1 of the 
Open-Loop Nominal and Closed-Loop Nominal responses in the Plots and 
LineType scroll table to be plotted.

Selecting an output from the Plots and LineType scroll table results in the 
enabling of the Compute push button in the main simgui simulation window 
and the appearance of the string Ready to Simulate in the main window 
message bar. After entering this data, the main simulation window should look 
like Figure 6-46.
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Figure 6-46:  Main Simulation Window with Subplot(1,1,1) Data Entered

Increment the Row# to 2, to indicate the bottom plot (subplot 212 of Plot Page 
#1). Enter the title of Plant Error Output 2, an x-axis label of Time and a 
y-axis label of Degrees. Select the font size to be 11 for the text and the axes, 
grid off, and select output 2 Open-Loop Nominal and Closed-Loop Nominal 
responses and the second output of these two responses to be plotted in the 
Plots and LineType scroll table. Your first simulation plot page should look 
the same as Figure 6-47.
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Figure 6-47:  First Simulation Plot Page

Increment the Plot Fig# to 2. This creates a new page with one plot axes and 
brings it to the foreground. The Window pull-down menu in any simgui 
window shows all the current simgui windows and allows you to hide the 
current window or bring any of the other windows to the foreground. For Plot 
Fig# 2, enter the title of Closed-loop plant outputs and controls, an x-axis 
label of Time and a y-axis label of Degrees - Newtons. Select the font size to be 
9 for the title, and 10 for all the text and the axes, grid off, and select the 
Closed-Loop Nominal responses. Change the Grouped button in the Plots 
and LineType scroll table to Free Form and select the y and u and outputs 3, 
4, 5 and 6 be plotted. Change the line types of the output 3 to be white, solid 
(w-), output 4 to be white, dashed (w--), output 5 to be white, dashed-dotted 
(w-.), and output to be white, dotted (w:). You have now finished setting up the 
plotting data and labeling the plots. It’s now time to calculate the 
continuous-time simulation.
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Pull down the Window menu from any simgui window and select the 
Parameters window. Select an integration time of 0.01 second by entering 
0.01 into the Integration Step Size editable text, as seen in Figure 6-48. 

Figure 6-48:  Simulation Parameter Window

Pull down the Window menu in the Parameter window and hide the 
Parameter window. Press the Compute button in the main window to initiate 
the simulations. Immediately the message Computing appears in the message 
bar and the label on the Compute button changes to Stop. By pressing the 
Stop button, the time simulation will terminate at the next available execution 
of a break. After the Computing message appears in the message bar, and 
assuming that the Stop button was not pressed, one of two pieces of 
information will appear in the message bar. If each simulation is estimated to 
take less than 3 minutes to compute then a running tab of simulation as it 
progresses is shown. If a simulation is estimated to take more than 3 minutes 
to compute the message, then

Simulation will take approx. X seconds: 
check Integration Step Size
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appears in the message bar. The variable X is an estimate of the number of 
seconds it will take to calculate the given time simulation. After 1 second, this 
changes into a running tab of simulation as it progresses.

Each time simulation in this example should take less than 3 minutes each to 
calculate unless the default Integration Step Size was selected. The results of 
these simulations are shown in Figure 6-49. Note that the time simulations are 
calculated for all of the system outputs. Therefore other outputs, not initially 
selected, can be displayed by selecting their respective checkbox without 
having to resimulate the system. Similarly outputs can be deselected without 
deleting them. You should try to select other outputs, change the color and 
linetype of the plotted lines, and simulate the open-loop and closed-loop 
perturbed systems.
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Figure 6-49:  Simulation Plot Page 1 and 2 with Time Response

Let’s compare these results to those with controller K4ss implemented. Return 
to the Main Simulation window and enter K4ss in the Controller editable 
text frame. Press the Controller push button. This loads K4ss into the 
Controller variable and enables the Compute button. The previous 
simulation data with K1ss implemented is deleted from the plot windows since 
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it is no longer current. Simulate the open-loop and closed-loop nominal systems 
by pressing the Compute button. The time responses are shown in Figure 6-50. 
Comparing this response to the response of K1ss (Figure 6-49), you can see the 
improved performance with K4ss implemented.

Figure 6-50:  Simulation Plot Page 1 and 2 with Time Response
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Printing Menu
Each Simulation Plot Page has a Printing menu for sending that figure to a 
printer or saving it to a file. Selecting the Print option from the Printing menu 
will pop up a Print dialog box, as shown in Figure 6-51. This window has three 
editable text boxes across from Device, Options, and Filename, and a Print 
and Cancel button. Device, Options, and Filename correspond to the exact 
same inputs you would provide to the standard MATLAB print command. 
Therefore, the exact string -dps and a filename have to be entered into the 
Device and Filename editable text respectively, to output the plot to a 
postscript file.

Leaving the three editable text boxes empty and pressing the Print button will 
send the current figure to the printer. This is similar to the MATLAB print 
command. Pressing the Cancel button will not execute any print command. 
After filling in any or all of the three editable text boxes, pressing the Print 
button will execute the MATLAB print command. Pressing either Print or 
Cancel executes that command and hides this window.

Figure 6-51:  Printing Dialog Box

Loading and Saving Plot Information
The File menu of the main simulation window contains a Load Setup, Save 
Setup, and Quit as seen in Figure 6-52.

Figure 6-52:  File Pull-Down Menu
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Selecting the Load Setup from the menu will display a Load Setup dialog box, 
as shown in Figure 6-53. The Load Setup option is used to load plot setup 
information that was previously saved using the Save Setup option. You can 
enter a Variable name, (the default is SAVESET), and a Filename. If the 
Filename editable text is left empty, the variable is loaded from the current 
workspace. Pressing the Load button loads the data from the location 
described by the Variable and Filename data and hides the window. Pressing 
Cancel hides the window and loads no data. The data loaded includes all the 
Plots and LineTypes Table information, plotting information and labels, final 
time, integration time, sample time, initial conditions, export suffix, and 
simulation name if available. If an error occurs during the load operation, an 
error message will appear in the main window message bar.

Selecting Save Setup from the File menu will display a Save Setup dialog box, 
very similar to Figure 6-53 except with the Save button replacing the Load 
button. This option saves all the current plot and line type data along with the 
labels, final time, integration time, sample time, initial conditions, export 
suffix, and simulation name, if available, to the Variable string name.

The Variable and Filename editable text and the Cancel button operate in the 
exact same manner as in the Load Setting dialog box. Pressing the Save 
button saves the data to the current workspace in the Variable editable text 
string. If this is empty, the default variable name is set to SAVESET. The data is 
saved to the filename defined by the Filename editable text, or to the filename 
SAVESET if there is no Filename string.

The Load Setup and Save Setup options are extremely useful. They allow you 
to customize simulation plots for use with many plants, controllers, 
perturbations, and input signals.

The Quit button of the File menu exits the simgui tool and deletes all the data 
and windows opened by simgui.

Figure 6-53:  Load Setup Dialog Box
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Simulation Type
You can select three different time simulations from the Options menu on the 
main window, as seen in Figure 6-54.

Figure 6-54:  Options Pull-Down Menu

The default is continuous-time simulation, which assumes that the Plant, 
Controller, and Perturbation variables are either continuous-time 
SYSTEMs, CONSTANTs, or not entered. Continuous-time simulations are 
performed using the trsp command and make use of the Final Time and 
Integration Step Size if you have input them in the Parameter window. The 
default final time is the last time data in the Input Signal. An integration step 
size is calculated by trsp if you do not provided one. See trsp for more 
information.

Note  The trsp command is conservative in its selection of an integration 
time; therefore, not inputting an Integration Step Size may lead to very 
time-consuming simulations.

Discrete-time simulations assume that the Plant, Controller, and 
Perturbation variables are either discrete-time SYSTEMs with the same 
sample rate, CONSTANTs, or not entered. Discrete-time simulations are 
performed using the dtrsp command and make use of the Final Time and 
Sample Time if you input them in the Parameter window. The default final 
time is the last time data in the Input Signal. The default sample time is 1. 
See dtrsp for more information.

A sample-data time simulation assumes that the Plant and Perturbation 
variables are either continuous-time SYSTEMs or CONSTANTs. The 
Controller variable is assumed to be either a discrete-time SYSTEM, 
CONSTANT, or not entered. Sample-data time simulations are performed 
using the sdtrsp command and make use of the Final Time, Integration 
Step Size and Sample Time if you input them in the Parameter window. The 
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default final time and integration step size are the same as in the 
continuous-time case. The default sample time is the same as the discrete-time 
case. See sdtrsp for more information.

Progress of all these simulations is shown in the message bar of the main 
window during their computation.

Simulation Parameter Window
The initial Parameter window is shown in Figure 6-48. The Simulation Data 
frame contains data that is used in the calculation of the time responses. The 
Final Time data is used by all the simulations to define the final simulation 
time and overrides the final time of the Input Signal data. The default, an 
empty Final Time editable text string, is the final time of the Input Signal 
data. The Integration Step Size data defines the integration step size used 
by the continuous and sampled-data simulations. The default, an empty 
Integration Step Size editable text string, is to have the trsp calculate the 
integration step size. The Sampled Time is the sample rate used by the 
discrete-time and sampled-data simulations. The default Sampled Time is 1. 
All three variables must be positive, nonzero numbers.

Note that all the variables with editable text to the right of them are encased 
in < >. This notation denotes that these variables are optional and are not 
required. The simgui program either calculates the value, Final Time and 
Integration Step Size, or assigns them a default value.

The Plant open-loop plant, Controller, and Perturbation initial conditions 
may be entered in their respective editable text boxes. These must be a single, 
real column vector whose size is the same as the number of states of the 
respective variable. You can input any workspace variable or valid MATLAB 
expression to define the initial conditions. The default, with the editable text 
boxes left empty, is for all the initial conditions to be zero. Incorrect initial 
condition data will result in an error message in the main window message bar.

The second column of data in the Parameter window corresponds to the 
Export Suffix, Simulation Tool Name and the linkable variables frame. 
Export Suffix is used for data that is automatically exported to the MATLAB 
workspace upon computation. This string is appended to default names for the 
variables as they are exported to the workspace. The Simulation Tool Name 
modifies the title of each simgui figure. The linkable variable frame contains a 
list of simgui variables that can be dragged, using the mouse button, to other 
µ-Tools user interface tools. Table 6-1 contains a list of the linkable variables 
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and their meaning. See “Dragging and Dropping Icons” for more information 
on how to drag and drop µ-Tools linkage variables. 

The Export to Workspace frame contains variables that you can export to the 
MATLAB workspace. Each variable is a radio button, which you can select or 
deselect. If a variable is selected, the variable is exported to the MATLAB 
workspace each time that simulation is performed. The default setting is to 
export YOLN, YOLP, YCLN, and YCLP every time they are calculated. The Export 
to Workspace names and variables are:

• Open-Loop Nominal time response, YOLN 

• Open-Loop Perturbed time response, YOLP 

• Closed-Loop Nominal time response, YCLN 

• Closed-Loop Perturbed time response, YCLP 

• Plant, the open-loop interconnection SYSTEM 

• Controller 

• Perturbation 

• Input Signal

Table 6-1:  Linkable Variables for simgui

Linkable Variable Meaning

Plant Open-loop interconnection SYSTEM

K The Controller variable

Pert The Perturbation variable

Input The Input Signal variable

YOLN Open-Loop Nominal time response

YOLP Open-Loop Perturbed time response

YCLN Closed-Loop Nominal time response

YCLP Closed-Loop Perturbed time response
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The Iteration Suffix string is appended to the end of all the output variables 
selected. The default is to export the time simulation data YOLN, YOLP, YCLN, 
and YCLP as they are computed.

Note  These exported variables are overwritten with their new output 
responses after the individual time responses are calculated.

Returning to the example, press the Refresh Variables button in the 
Workspace Manager if it is currently open. We can see from the Workspace 
Manager that the open-loop nominal time response, YOLN, and the closed-loop 
nominal time response, YCLN, are saved in the MATLAB workspace (see 
Figure 6-56). This is based on the setting of the Export to Workspace radio 
buttons. YOLP and YCLP are not in the MATLAB workspace since the open-loop 
and closed-loop perturbed responses were not calculated in this example.
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Figure 6-55:  Workspace Manager Window
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Dragging and Dropping Icons
All the µ-Tools graphical user interface (GUI) programs, wsgui, dkitgui, and 
simgui have a drag and drop facility. The data icons that can be dragged come 
from a scroll table of linkable variable names in each program. In wsgui, the 
MATLAB workspace variable names currently in the main scroll table (see 
Figure 6-57) are the icons that are dragable. In dkitgui, the scroll table shown 
in Figure 6-56 contains the linkable variable names that are dragable. The 
simgui scroll table shown in Figure 6-56 contains the variables from simgui 
that are dragable. The left column shows the names of the link variables and 
the right column describes their meaning. 

Figure 6-56:  dkitgui (left) and smgui (right) Linkable Variables Icon Tables for 
Dragging

To drag an icon, which is a variable name, position the mouse arrow over the 
variable name to be dragged. Press the left mouse button and hold the button 
down. You have now selected the variable name for dragging. For example, 
select the idmod variable for dragging from the wsgui scroll table and move the 
mouse button slightly. (Note: the wsgui workspace has just loaded the mk_wts 
file from the MATLAB workspace.) Your screen should look similar to 
Figure 6-57. 
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Figure 6-57:  Dragging the Controller Variable Name in dkitgui

There are several important facts regarding the dragging and dropping of icons 
that should be noted:

• Icons being dragged are only visible in windows, and they are not visible 
when the icons are over a frame or other MATLAB uicontrol objects.

• Dragging an icon may be slow on networked computers. This is due to the 
overhead of transferring the information about the icon being dragged.

• The drag and drop operation is only completed if the icon is deposited in a 
drop box.
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Items being dragged need to be deposited directly inside a drop box. An 
example of a drop box is shown in Figure 6-59; it’s to the left of the Controller 
push button in the simgui main window. To do this, position the icon being 
dragged in the center of a drop box and release the mouse button.

Figure 6-58:  Drag Khinf from dkitgui to simgui

For example, you can select to drag the fourth D – K iteration controller from 
the spinning satellite example in the “D-K Iteration User Interface Tool: 
dkitgui” section to the LFT time simulation tool, simgui. Select the Khinf link 
variable in the dkitgui main window and move the mouse button slightly 
(Figure 6-57). Drag the Khinf link variable over to the main simgui window 
(Figure 6-58) and drop it in the Controller drop box, as shown in Figure 6-59. 
Upon successfully dragging and dropping the data, the string 
grabvar(1,'Khinf') appears in the main simgui window Controller editable 
text frame.
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Figure 6-59:  Drop Khinf into simgui Controller Drop Box
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Figure 6-60:  Evaluated Drop of Khinf

In simgui and dkigui the linkable variables are to be extracted from a large 
storage matrix. The program grabvar performs this operation. The inputs to 
the grabvar function are the µ-Tools GUI figure number and the variable name 
in the originating function. In this example, the variable dragged from dkitgui 
to simgui is Kinf. The dkitgui figure number is 1, which corresponds to the 1 
in the simgui editable text: grabvar(1,'Khinf'), as seen in Figure 6-60. The 
drag and drop operation is responsible for entering the required input data and 
requires no additional input from you.
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This chapter has a number of examples to show how to apply the µ-Analysis 
and Synthesis Toolbox (µ-Tools) to robust control problems. These examples 
include:

• SISO Gain and Phase Margins

• MIMO Loop-at-a-Time Margins

• Analysis of Controllers for an Unstable System

• MIMO Margins Using m

• Space Shuttle Robustness Analysis

• HIMAT Robust Performance Design Example

• F–14 Lateral-Directional Control Design

• A Process Control Example: Two Tank System
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SISO Gain and Phase Margins
Gain and phase margins play an important role in control by defining 
robustness margins for systems. Unfortunately these margins, by themselves, 
may be misleading in some cases.

Consider the plant

G = nd2sys([1 -2],[2 -1],-1);
minfo(G)

and four different controllers that stabilize the plant

Construct the controller K1 and form the closed-loop using formloop.

k1 = 1;
T1 = formloop(G,k1,'neg','pos');
spoles(T1)

The command formloop produces a 2-input, 2-output system T1, as shown in 
Figure 7-1. The third input argument 'neg' denotes that there is negative 
feedback on the y2 channel. The fourth input argument 'pos' denotes that the 
feedback forward input u2 is positive. These are the default values for 
formloop.

G s( ) s 2–
2s 1–
---------------=

K1 s( ) 1=

K2 s( ) s β+
βs 1+
---------------- β 0 as,> β 2→( )=

K3 s( ) βs 1+
s β+

---------------- β 0 as,> β 2→( )=

K4 s( ) s 2.5+
2.5s 1+
---------------------

1.7s2 1.5s 1+ +

s2 1.5s 1.7+ +
-----------------------------------------=



7 Robust Control Examples

7-4

Figure 7-1  formloop Interconnection Structure

For the problem at hand, form the closed-loop system and calculate the poles of 
the closed-loop system.

K2 = nd2sys([1 1.9],[1.9 1]);
clp2 = formloop(G,K2);
spoles(clp2)
k3 = nd2sys([1.9 1],[1 1.9]);
clp3 = formloop(G,k3);
spoles(clp3) 
k4 = nd2sys([1 2.5],[2.5 1]);
k4 = mmult(k4,nd2sys([1.7 1.5 1],[1 1.5 1.7]));
clp4 = formloop(G,k4);
spoles(clp4)

For gain and phase margins, we are interested in the loop transfer function L(s) 
:= G(s) K(s). Select a frequency range of 0.01 rad/sec to 100 rad/sec with 100 
points. Calculate the frequency response of the loop transfer function and plot 
the Bode and Nyquist diagrams of L. The command add_disk adds a unit disk 
to the Nyquist plot. The results are shown in Figure 7-2.

omega = logspace(-2,2,100);
G_g = frsp(G,omega);
k1_g = frsp(k1,omega);L1 = mmult(G_g,k1_g);
K2_g = frsp(K2,omega);L2 = mmult(G_g,K2_g);
k3_g = frsp(k3,omega);L3 = mmult(G_g,k3_g);
k4_g = frsp(k4,omega);L4 = mmult(G_g,k4_g);
vplot('nyq',L1,'-',L2,'--',L3,'-.',L4,'.'), add_disk
axis([-4 1 -1 1])
vplot('bode',L1,'-',L2,'--',L3,'-.',L4,'.'), grid
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Controller K1 provides a compromise between a large gain and phase margin. 
Controller K2 optimizes the gain margin for this example, whereas controller 
K3 optimizes the phase margin. Controller K4 tries to optimize both gain and 
phase margins, resulting with about 50° phase margin, and a gain margin of 3 
(it can tolerate increase or decrease in gain by a factor of 3). These margins, 
though, are very sensitive to small changes in the plant (a 50% gain change, to 
either 1.5 or 0.67, reduces the phase margin to less than 10°) illustrating that 
gain and phase margins are not always an accurate measure of the robustness 
of a control design even for single-input/single-output systems.
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Figure 7-2:  Nyquist and Bode Plots of the Loop Gain with k1, k2, k3, and k4
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MIMO Loop-at-a-Time Margins
This example is designed to illustrate that loop-at-a-time margins (gain, phase, 
and/or distance to –1) can be inaccurate measures of multivariable robustness 
margins. We will see that margins of the individual loops may be very sensitive 
to small perturbations within other loops.

The nominal closed-loop system considered here is shown in Figure 7-3.

Figure 7-3:  Nominal Closed-Loop System

G and K are 2 × 2 multi-input/multi-output (MIMO) systems, defined as

Set α := 10, construct G in state-space form and compute its frequency 
response.

a = [0 10;-10 0];
b = eye(2);
c = [1 10;-10 1];
G = pck(a,b,c);
K = eye(2);
omega = logspace(-3,2,50);
Gg = frsp(G,omega);
minfo(Gg);

We want to consider perturbations to both input channels, as shown in 
Figure 7-4.

K G

d - -

6 -d -
6�

�

G := 1

s2 α2
+

------------------ s α2
– α s 1+( )

α– s 1+( ) s α2
–

K I2=,
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Figure 7-4:  Perturbed Closed-Loop System

Break the loop at the place where one perturbation is, and compute the 
open-loop transfer function. This transfer function will be a function of the 
remaining perturbation. For instance, to check the margins in the first channel 
with perturbations in the second channel, consider the diagram in Figure 7-5.

Figure 7-5:  Closed-Loop System with Loop Broken in Channel 1 and 
Perturbation in Channel 2

In this particular example, K is the identity, so the loop in Figure 7-5 can be 
redrawn, as shown in Figure 7-6. This figure is easily constructed using starp.

Figure 7-6:  Redrawn Closed-Loop System with Loop Broken in Channel 1 and 
Perturbation in Channel 2

A Bode or Nyquist plot of the transfer function from z1 to w1 reveals the margin 
(nearness to +1 point in this case, since the negative sign is embedded in the 
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transfer function from z to w) in the first channel as a function of perturbations 
in the second channel. Refer to Figure 7-6 and calculate the nominal transfer 
function obtained by breaking the loop in the 1st channel. A Bode plot of the 
transfer function is shown in Figure 7-7. Note that this loop is an integrator, so 
the single-loop margin is great. In a similar manner, calculate the nominal 
transfer function obtained by breaking the loop in the second channel. The 
results are shown in Figure 7-7.

nom_ch1_lb = starp(mscl(Gg,-1),1,1,1);
nom_ch2_lb = starp(1,mscl(Gg,-1),1,1);
vplot('bode',nom_ch1_lb,'-',nom_ch2_lb,'--');

Figure 7-7:  Bode Plot the Single-Loop Transfer Functions

The previous Bode plots show that each channel can tolerate large, 
loop-at-a-time, gain variations. Now though, consider a simultaneous 10% 
variation in each loop. Specifically, check the internal stability of the perturbed 
closed-loop shown in Figure 7-4, redrawn in Figure 7-8, with , 
and .

10
3

10
2

10
1

10
0

10
1

10
2

0

100

P
ha

se
 (

de
gr

ee
s)

Frequency (radians/sec)

10
3

10
2

10
1

10
0

10
1

10
2

10
2

10
0

10
2

10
4

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

Bode Plot: Single Loop Broken in Channel 1 and 2

δ1 1– 101⁄=
δ2 1 101⁄=



7 Robust Control Examples

7-10

To do this, note that since K = I2, the perturbed loop in Figure 7-4 is simply the 
star product (starp) of –G and the matrix [1+delta1 0; 0 1+delta2].

Figure 7-8:  Equivalent Perturbed Closed-Loops

Note  When two SYSTEM matrices are connected using starp, and all of the 
inputs of the top system are all of the outputs of the bottom system, and all of 
the inputs of the bottom system are all of the outputs of the top system, then 
the output of starp is the “A” matrix of the interconnection, stored as a 
regular MATLAB matrix.

The following code creates two perturbations of size , creates the 
perturbation matrix, forms the closed-loop system and calculates the 
closed-loop eigenvalues.

delta1 = -1/sqrt(101);
delta2 = 1/sqrt(101);
delta = [1+delta1 0 ; 0 1+delta2];
minfo(G)
minfo(delta)
clpAmat = starp(mscl(G,-1),delta,2,2)
minfo(clpAmat)
eig(clpAmat)

Notice that the eigenvalues of clpAmat are unstable. Hence, this small (10%), 
simultaneous perturbation to both channels causes instability (slightly larger 
values for δ1 and δ2 push the eigenvalues further into the right-half-plane).

101
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We can see the effect of simultaneous perturbations with the help of a Nyquist 
plot. Refer back to Figure 7-6 and calculate the transfer function obtained by 
breaking the loop in the first channel, with a perturbation of δ2 = 0.001. The 
single-loop margin in channel 1 is still quite large, since the Nyquist plot, solid 
line in Figure 7-9 intersects the real axis around 11. Try a slightly larger value 
for δ2 (again, note that the +1 point is of interest due to the extra minus (–) sign 
on G).

delta2 = 0.001;
pert_ch1_lb1 = starp(mscl(Gg,-1),1+delta2,1,1);
vplot('nyq',pert_ch1_lb1);
delta2 = 0.01;
pert_ch1_lb2 = starp(mscl(Gg,-1),1+delta2,1,1);
vplot('nyq',pert_ch1_lb1,'-',pert_ch1_lb2,'--');
add_disk

Note the significant degradation in the margin due to a 1% variation in channel 
2.

Figure 7-9:  Nyquist Plot of Simultaneously Perturbed Closed-Loop System
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It is easy to write a for loop (as in ex_ml1) that calculates the open-loop 
frequency response in channel 1 for several values of δ2. Six δ2 values are 
constructed from 0.001 to 0.1. A for loop calculates the perturbed loop transfer 
function in channel 1 for the six values of δ2 and their responses are plotted on 
a Nyquist diagram.

file:ex_ml1.m
delta2values = logspace(-3,-1,6);
pert_ch1_lb = [];
for i=1:length(delta2values)

delta2 = delta2values(i);
pert_ch1_lb = ...
sbs(pert_ch1_lb,starp(mscl(Gg,-1),1+delta2,1,1));

end
xa = vpck([-2; 12],[1 2]);
ya = vpck([-sqrt(-1); 6*sqrt(-1)],[1 2]);
vplot('nyq',pert_ch1_lb,xa,ya);
title('Loop Broken in Channel 1, Delta2 in [.001 .1]')
xlabel('Real')
ylabel('Imag')

Typing

ex_ml1

at the command line generates Figure 7-10. Note that the margin in channel 1 
rapidly disappears due to small perturbations in channel 2.
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Figure 7-10:  Nyquist Plot of Simultaneously Perturbed Closed-Loop System 
from δ2 = 0.001 to δ2 = 0.1

Exactly analogous results hold for breaking the loop in channel 2, and 
considering small perturbations in channel 1. This can be verified by closing 
the upper loop of –G with (1 + δ1). For example,

delta1 = -0.01;
pert_ch2_lb = starp(1+delta1,mscl(Gg,-1),1,1);
vplot('nyq',pert_ch2_lb);
add_disk
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Figure 7-11:  Nyquist Plot of Simultaneously Perturbed Closed-Loop System 
for δ1 = –0.01

Hence, in a multivariable system the single loop margins may be good though 
simultaneous interaction of perturbations in each loop may lead to instability, 
even for small perturbations. The structured singular value, µ, can be used to 
detect the nonrobustness in this feedback system. To see this we will reanalyze 
this example using µ in the “MIMO Margins Using m” section in this chapter.
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Analysis of Controllers for an Unstable System
Unstable example Recall from the “Unmodeled Dynamics” section in Chapter 
4, the example with the nominal plant model

and the multiplicative input uncertainty model

G and Wu describe a set M(G, Wu) of plant models defined by

(7-1)

with the restriction that the number of right-half plane poles of perturbed plant 
equal the number of right-half plane poles of G. The nominal model G, 
weighting function Wu, and the unknown transfer function ∆G are used to 
parameterize all the possible models.

We are interested in the stability and performance of the closed-loop system for 
all possible plant models in the set M(G, Wu). In this example, we choose the 
performance objective to be a stable, closed-loop system, and output 
disturbance rejection up to 0.6 rad/sec, with at least 100:1 disturbance rejection 
at DC.

This objective can approximately be represented as a weighted H∞ norm 
constraint on the sensitivity function,

for all  ∈ M(G, Wu), using the weighting function

G := 1
s 1–
------------

Wu := 
1
4
---

1
2
---s 1+( )

1
32
-------s 1+

----------------------

M G Wu,( ) := G I ∆GWu+( ) : max ∆G jω( ) 1≤{ }.
ω

Wp

1 G̃K–
------------------

∞
1≤

G̃



7 Robust Control Examples

7-16

A block diagram of this uncertain closed-loop system illustrating the 
performance objective (closed-loop transfer function from d → e) is shown in 
Figure 7-12.

Figure 7-12:  Uncertain Closed-Loop System

Grouping G, Wu, and Wp together (as P), the uncertain closed-loop system is 
redrawn in Figure 7-13.

Figure 7-13:  General Interconnection for Uncertain System
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file: ex_unic.m
G = nd2sys(1,[1 -1]);
Wu = nd2sys([0.5 1],[0.03125 1],.25);
WP = nd2sys([.25 0.6],[1 0.006]);
systemnames = 'G Wu WP';

sysoutname = 'P';
inputvar = '[ z; d; u ]';
input_to_p = '[ z + u ]';
input_to_Wu = '[ u ]';
input_to_WP = '[ G + d ]';
outputvar = '[ Wu; WP; G + d ]';
cleanupsysic = 'yes';

sysic

Next, consider two controllers, K1 and K2 which stabilize the nominal plant 
model G.

For each controller, define M := FL(P,K). M22 is the nominal d → e transfer 
function, and hence, nominal performance is characterized by ||M22||∞ ≤ 1. The 
magnitude of the M22 transfer function with K1 and K2 implemented is shown 
in Figure 7-14. Both controllers easily achieve the nominal performance 
objective.

M11 is the transfer function that the perturbation ∆ sees, so that robust 
stability over M(G, Wu) is equivalent to ||M11||∞ < 1. The magnitude of the M11 
transfer function is shown in Figure 7-15. Both controllers achieve the robust 
stability objective.

K1 10–
0.9s 1+

s
--------------------- K2 1–

2.8s 1+
s

---------------------==
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Figure 7-14:  Nominal Performance Plots

Figure 7-15:  Robust Stability Plots
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The actual goal is to achieve the performance objective for every plant model 
as defined by the dashed-box in Figure 7-12. This objective is defined as robust 
performance.We can use the structured singular value, µ, to analyze the 
closed-loop system to determine if robust performance is achieved. Achieving 
robust performance is mathematically equivalent to

where ∆P is the extended uncertainty set, consisting of the actual scalar 
unmodeled dynamics (i.e., a complex block) uncertainty block (representing 
∆G), and the fictitious uncertainty block used to reformulate the performance 
criterion as a stability problem (see section “Using m to Analyze Robust 
Performance” in Chapter 4 for details). The block structure used to evaluate 
robust performance is

∆P := {diag[∆,∆F] : ∆ ∈ C, ∆F ∈ C},

A plot of  is shown in Figure 7-16.

Figure 7-16:  Robust Performance Plots
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Note that while K1 achieves better nominal performance than K2, the closed- 
loop system with K2 has better robust performance properties than with K1. In 
fact, the controller K2 does, just barely, achieve robust performance. Hence, for 
every plant , the closed-loop system, with K2 is stable, and 
moreover

This is not true for the closed-loop system with K1, as the robust performance 
test, using µ is not satisfied for FL(P,K1).

The script-file

ex_usrp

constructs the controllers, forms the closed-loop systems, calculates the 
closed-loop frequency responses, performs the analysis, and generates the 
plots. A listing of ex_usrp is as follows.

G̃ M G Wu,( )∈

Wp

1 G̃K2–
---------------------

∞

 < 1
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file: ex_usrp.m
K1 = nd2sys([.9 1],[1 0],-10);
K2 = nd2sys([2.8 1],[1 0],-1);
om = logspace(-2,2,80);
M1 = starp(P,K1);
M2 = starp(P,K2);
M1g = frsp(M1,om);
M2g = frsp(M2,om);
uncblk = [1 1];
fictblk = [1 1];
deltaset = [uncblk;fictblk];
bnds1 = mu(M1g,deltaset);
bnds2 = mu(M2g,deltaset);
vplot('liv,m',sel(M1g,2,2),'-',sel(M2g,2,2),'--')
xlabel('Frequency (rad/sec)')
ylabel('M22');
title('Nominal Performance (K1 solid, K2 dashed)');
vplot('liv,m',sel(M1g,1,1),'-',sel(M2g,1,1),'--')
xlabel('Frequency (rad/sec)')
ylabel('M11');
title('Robust Stability (K1 solid, K2 dashed)');
vplot('liv,m',sel(bnds1,1,1),'-',sel(bnds2,1,1),'--')
xlabel('Frequency (rad/sec)')
ylabel('mu(M)');
title('Robust Performance (K1 solid, K2 dashed)');

How does the weighted sensitivity transfer function degrade with uncertainty? 
This can be answered easily using the worst-case performance analysis, which 
shows the worst-case degradation of performance as a function of the size of the 
uncertainty.We also construct, for each closed-loop system, the worst-case 
perturbation of size (i.e., the worst case plant from M(G, Wu)) and use this later 
in time-domain simulations. The script file

ex_wcp

performs these calculations.
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file: ex_wcp.m
[deltabad1,wcp_l1,wcp_u1] = wcperf(M1g,uncblk,1,8);
[deltabad2,wcp_l2,wcp_u2] = wcperf(M2g,uncblk,1,8);
vplot(wcp_l1,wcp_u1,wcp_l2,'--',wcp_u2,'--')
xlabel('Size of Delta_G')
ylabel('Weighted Sensitivity')
title('Performance Degradation (K1 solid, K2 dashed)')

The performance degradation curve is shown in Figure 7-17. The fourth 
argument to wcperf, in this case 8, means that there will be at least eight 
points in the performance degradation curve.

Figure 7-17:  Performance Degradation
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

Size of Delta_G

W
ei

gh
te

d 
S

en
si

tiv
ity

Performance Degradation (K1 solid, K2 dashed)

k1 (solid line) k2 (dashed line)

max ∆G jω( )  Š 0.76,
ω



Analysis of Controllers for an Unstable System

7-23

the robust closed-loop performance using K2 is better than that obtained using 
K1. The perturbations deltabad1 and deltabad2 are the worst-case 
perturbations ∆G, of size 1.They each cause the weighted sensitivity to degrade 
a maximal amount, over all perturbations of size 1. In the case of K1, the 
perturbation deltabad1 causes the weighted sensitivity to degrade to 
approximately 3.5, while in the case of K2, deltabad2 causes the weighted 
sensitivity to degrade to approximately 1.0. We will use these worst-case 
perturbations in time-domain simulations.

Based on the robust performance analysis results, K2 will stabilize the nominal 
plant and the seven extreme plant models discussed in the “Unmodeled 
Dynamics” section in Chapter 4. Also, the performance degradation, in terms 
of the weighted sensitivity function, should be small. Using controller K1, 
stability is also guaranteed. However, since FL(P,K1)(jω) has a peak µ-value of 
about 1.2, it is clear that K1 does not have robust performance over the set 
M(G,Wu) and we expect the performance degradation over the seven extreme 
plants to be worse than that using K2.

These seven plants, all of which are members of the set M(G,Wu) and the 
worst-case plant from M(G,Wu), are

and are constructed via

ex_mkpl

The contents of ex_mkpl are listed below.

Gwc G 1 ∆wcWu+( )[ ]=

G5
1

s 1–
------------

702

s2 2 0.15 70s 702
+⋅ ⋅+

-------------------------------------------------------------
 
 
 

=

G7
1

s 1–
------------

50
s 50+
--------------- 

 =
6

G6
1

s 1–
------------

702

s2 2 5.6 70s 702
+⋅ ⋅+

----------------------------------------------------------
 
 
 

=

G1
1

s 1–
------------

6.1
s 6.1+
----------------- 

 = G2
1.425

s 1.425–
-----------------------=

G3
.67

s 0.67–
--------------------= G4

1
s 1–
------------

0.07s– 1+
0.07s 1+

---------------------------- 
 =
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file: ex_mkpl.m
G1 = mmult(G,nd2sys([6.1],[1 6.1]));
G2 = nd2sys([1+0.425],[1 -1-0.425]);
G3 = nd2sys([1-0.33],[1 -1+0.33]);
G4 = mmult(G,nd2sys([-0.07 1],[0.07 1]));
G5 = mmult(G,nd2sys([70^2],  [1 2*0.14*70 70^2]));
G6 = mmult(G,nd2sys([70^2],  [1 2*5.6*70 70^2]));
Gt = nd2sys([50],[1 50]);
G7 = mmult(G,Gt,Gt,Gt,Gt,Gt,Gt);
Gwc1 = mmult(G,madd(1,mmult(deltabad1,Wu)));
Gwc2 = mmult(G,madd(1,mmult(deltabad2,Wu)));

The closed-loop system shown in Figure 7-18 is used for time simulations. 
Twenty time simulations are computed, for all combinations of K1 and K2, with 
the nominal plant G, the seven extreme plants G1,. . .,G7, and the two 
worst-case plants Gwc1 and Gwc2. Rather than simulate an output disturbance, 
we manipulate the diagram, and simulate a unit-step reference command.

Figure 7-18:  Simulation Block Diagram

This interconnection is most easily constructed using formloop, as described 
earlier. We use positive feedback (as that was the convention used in the design 
of the controllers) and invert the reference signal gain, to accomplish the 
tracking. The (2,1) entry of the MIMO system that formloop produces is the 
SYSTEM matrix from reference input r to plant output y.
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Typing

ex_mkclp

forms the 20 SISO systems, as below.

file: ex_mkclp.m
clpg_k1 = sel(formloop(G,K1,'pos','neg'),2,1);
clpg1_k1 = sel(formloop(G1,K1,'pos','neg'),2,1);
clpg2_k1 = sel(formloop(G2,K1,'pos','neg'),2,1);
clpg3_k1 = sel(formloop(G3,K1,'pos','neg'),2,1);
clpg4_k1 = sel(formloop(G4,K1,'pos','neg'),2,1);
clpg5_k1 = sel(formloop(G5,K1,'pos','neg'),2,1);
clpg6_k1 = sel(formloop(G6,K1,'pos','neg'),2,1);
clpg7_k1 = sel(formloop(G7,K1,'pos','neg'),2,1);
clpgwc1_k1 = sel(formloop(Gwc1,K1,'pos','neg'),2,1);
clpgwc2_k1 = sel(formloop(Gwc2,K1,'pos','neg'),2,1);
clpg_K2 = sel(formloop(G,K2,'pos','neg'),2,1);
clpg1_K2 = sel(formloop(G1,K2,'pos','neg'),2,1);
clpg2_K2 = sel(formloop(G2,K2,'pos','neg'),2,1);
clpg3_K2 = sel(formloop(G3,K2,'pos','neg'),2,1);
clpg4_K2 = sel(formloop(G4,K2,'pos','neg'),2,1);
clpg5_K2 = sel(formloop(G5,K2,'pos','neg'),2,1);
clpg6_K2 = sel(formloop(G6,K2,'pos','neg'),2,1);
clpg7_K2 = sel(formloop(G7,K2,'pos','neg'),2,1);
clpgwc1_K2 = sel(formloop(Gwc1,K2,'pos','neg'),2,1);
clpgwc2_K2 = sel(formloop(Gwc2,K2,'pos','neg'),2,1);

These closed-loop systems are simulated with a unit-step reference input at t = 
0.5. The time response with controllers K1 (top) and K2 (bottom) implemented 
are shown in Figure 7-19.

Typing

ex_ustr

runs the simulations, and generates the time response plots.
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file: ex_ustr.m 
stepref = step_tr([0 0.5 10],[0 1 1],.01,10);
Tfinal = 10;
tinc = 0.01;
yg_k1 = trsp(clpg_k1,stepref,Tfinal,tinc);
yg1_k1 = trsp(clpg1_k1,stepref,Tfinal,tinc);
yg7_k1 = trsp(clpg7_k1,stepref,Tfinal,tinc);
ygwc1_k1 = trsp(clpgwc1_k1,stepref,Tfinal,tinc);
ygwc2_k1 = trsp(clpgwc2_k1,stepref,Tfinal,tinc);
yg_k2 = trsp(clpg_k2,stepref,Tfinal,tinc);
yg1_k2 = trsp(clpg1_k2,stepref,Tfinal,tinc);
ygwc2_k2 = trsp(clpgwc2_k2,stepref,Tfinal,tinc);
subplot(211)
vplot(vdcmate(yg_k1,5),'+',yg1_k1,yg2_k1, yg3_k1,yg4_k1,...

yg5_k1,yg6_k1,yg7_k1,ygwc1_k1,ygwc2_k1);
xlabel('Time (seconds)')
title('Closed-loop responses using k1') 
subplot(212)
vplot(vdcmate(yg_k2,5),'+',yg1_k2,yg2_k2, yg3_k2,yg4_k2,...

yg5_k2,yg6_k2,yg7_k2,ygwc1_k2,ygwc2_k2);
xlabel('Time (seconds)')
title('Closed-loop responses using K2')

Both controllers stabilize all plant models. The closed-loop performance 
provided by K2 is very similar for all the plants. This is expected based on the 
robust performance analysis using µ, which showed that every plant in the set 
M(G,Wu) is stabilized and effectively controlled with K2. The closed-loop 
performance provided by K1 is not very robust. The large overshoot, undershoot 
and oscillations for some of the responses reinforces the notion that K1 does not 
achieve robust performance, as defined by the uncertain plant model set 
M(G,Wu), and the weighted sensitivity transfer function.



Analysis of Controllers for an Unstable System

7-27

Figure 7-19:  Time Response with K1 (top) and K2 (bottom) Implemented
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Redesign Controllers Using D – K Iteration
The D – K iteration, using dkitgui, can be used to design a robust controller 
for the uncertain plant model M(G,Wu) and weighted sensitivity performance 
objective implied by the interconnection structure in Figure 7-12. Start 
dkitgui, and enter the data as shown in the dkitgui Setup window, 
Figure 7-20.

Figure 7-20:  Unstable System dkitgui Setup Window

Return to the main Iteration window, as shown inFigure 7-21, and pull down 
the Iteration menu and select 3 from the Auto Iterate submenu. Figure 7-21 
shows the main Iteration window after the third iteration has completed.
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Figure 7-21:  Main dkitgui Window After Three Iterations

Controller K1dk corresponds to the first D – K iteration H∞ design and 
controller K3dk corresponds to the third D – K iteration design.

Controller K1dk stabilizes all seven plant models, though the performance is 
poor, with large settling times, and large overshoot. This is not surprising, 
based on the robust performance analysis using µ. The value of µ with K1dk 
implemented was 1.55(> 1).

Controller K3dk achieves a closed-loop, robust performance µ-value of about 
0.7, guaranteeing stability and good closed-loop performance for all seven plant 
models (as these are contained in the set M(G,Wu)). The simulations agree with 
this conclusion. Note the improvement in overshoot and settling time (and 
greater insensitivity) over all of the previous closed-loop simulations (using K1, 
K2 and K1dk). The nominal responses are denoted by the “+” symbol linetype. 
Typing

ex_ustrd

generates the plots shown inFigure 7-22.
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Figure 7-22:  Time Response with K1dk (top) and K3dk (bottom) Implemented
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Near the H∞ optimal solution, the controller tends to have high bandwidth, 
providing some argument against using the H∞ norm as the sole measure of 
performance. For this reason, we often back off from optimality, leading to a 
lower bandwidth, and more reasonable controller. In the Parameter window, 
change Gamma Min to 0.78, and change Gamma Max to 0.78. This fixes the next 
control design to be at γ = 0.78, which is approximately 10% above the optimal 
value of 0.71. Then, in the Iteration window, press Control Design to produce 
K4dk. This controller will sacrifice some (about 10%) H∞ performance, but have 
much lower bandwidth. You should repeat the time-domain simulations for 
this controller.

You can also do simple model reduction on this controller, using sysbal and 
strunc. In the Setup window, type

reducek(

in the <Controller> data entry box. Then, drag, from the Iteration window, 
the linkable variable Khinf into the Setup window drop box for the controller. 
Finally, type

,3)

in the controller data entry box, which should now read

reducek(grabvar(2,'Khinf'),3)

The 2 corresponds to the MATLAB figure number associated with the 
Iteration window. In your case, it may not be 2. However, the dragging action 
will put the correct number in this place. Next, press the <Controller> 
pushbutton. This will grab the current H∞ controller, balance it, and reduce it 
to third order using a simple M-file reducek, and place the reduced order 
controller back into Kuse. Kuse is the controller for which all analysis in 
dkitgui takes place (in dkitgui, the variable Kuse is automatically set to 
Khinf immediately after Khinf is designed). This reenables the Form Closed 
Loop pushbutton, which will implement the controller stored in Kuse. Pressing 
the Frequency Response and Compute Mu pushbuttons, you can determine 
the effectiveness of the reduced order controller, and repeat the process for 
different choice of controller order. In this example, a third order controller is 
suitable.

Time responses using this suboptimal, reduced order controller are shown in 
Figure 7-23.
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Figure 7-23:  Time Response with K4dkreduced Implemented
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MIMO Margins Using µ
Recall the conclusions of the “MIMO Loop-at-a-Time Margins” section 
concerning loop-at-a-time margins in MIMO systems. These margins can be 
inaccurate measures of multivariable robustness margins. In this exercise, we 
compare two controllers for a weighted robust stability problem similar to that 
in the“MIMO Loop-at-a-Time Margins” section, and see that the structured 
singular value, µ, accurately predicts their robust stability characteristics.

Consider an uncertainty model consisting of multiplicative uncertainty at the 
plant input in each channel. A block diagram of the model of the open-loop 
plant, with perturbations, is shown in Figure 7-24.

Figure 7-24:  Plant Model with Multiplicative Uncertainty
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normalized to 1, the transfer functions Wδi reflect the frequency-dependent 
size of the uncertainty.

The first input channel is modeled with 10% uncertainty at low frequency, 
increasing to 100% uncertainty at approximately 20 rads/sec, and larger 
uncertainty for higher frequencies. In channel 2, the low frequency uncertainty 
is 20%, rising to 100% at approximately 45 rads/sec. Type in the following data 
for the problem.

a = [0 10;-10 0];
b = eye(2);
c = [1 10;-10 1];
G = pck(a,b,c);
wdel1 = nd2sys([1 2],[1/60 20]);
wdel2 = nd2sys([1 9],[1/40 45]);
omega = logspace(-3,2,50);
wdel1_g = frsp(wdel1,omega);
wdel2_g = frsp(wdel2,omega);
vplot('liv,lm',wdel1_g,wdel2_g)
title('Multiplicative Uncertainty Weights')

Figure 7-25:  Multiplicative Uncertainty Weights
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To use the µ theory, we need to isolate the perturbations from the known 
components. We do this by constructing a four input, four output system, with 
two fictitious input/output pairs (w,z), as well as two actual input/output pairs 
(u,y). The fictitious inputs and outputs are used to model the multiplicative 
uncertainty at the plant input. The system is called P, and is shown below.

The internal structure of P is shown in Figure 7-26.

Figure 7-26:  Plant Model with Multiplicative Uncertainty Blocks Pulled Out

The SYSTEM matrix P can be constructed easily from the components, using 
the SYSTEM interconnection program, sysic.

systemnames = 'G wdel1 wdel2';
inputvar = '[w{2}; u{2}]';
input_to_G = '[u(1) + wdel1; u(2) + wdel2]';
input_to_wdel1 = '[w(1)]';
input_to_wdel2 = '[w(2)]';
outputvar = '[u; G]';
sysoutname = 'P';
sysic;
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The feedback controller for this problem will measure the variables y, and 
generate control signals, u. In a block diagram, the perturbed closed-loop 
system appears as shown in Figure 7-27. In terms of P, the perturbed 
closed-loop system appears as Figure 7-28.

Figure 7-27:  Closed-Loop System with δ1 and δ2 Uncertainty

Figure 7-28:  Closed-Loop System with Uncertainty

Next, we need to construct the transfer function that the 2 × 2 perturbation 
matrix ∆ sees, namely M := FL(P,K). This transfer function is computed by 
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closing the measurement/control feedback loop of the system P with the 
controller. For this example, we will compare two controllers, Ka, a constant 
gain 2 × 2 matrix, and Kb, a four-state, two input, two output SYSTEM. The 
command ex_mmmk makes up controllers Ka and Kb.

ex_mmmk;
ka
ka = 

-1 0
0 -1

seesys(kb)

Next, close the lower loop of P with the controller (Ka or Kb) yielding M, which 
casts the robust stability problem as that depicted in Figure 4-13. Use starp to 
compute the closed-loop system M. A block diagram of this is shown in 
Figure 7-29.

Figure 7-29:  Closed-Loop Interconnection Block Diagrams

–1.9e+01 2.6e+01 –4.1e+01 –2.4e+01 | –5.4e+00 –2.6e+00

–8.9e+00 –4.5e+01 9.4e+00 8.3e+01 | 5.1e+00 –6.5e+00

4.1e+01 2.2e–02 –7.4e+01 –6.7e+01 | 4.1e+00 3.5e+00

1.6e+01 –8.4e+01 1.2e+01 –3.4e+02 | 4.9e+00 –5.0e+00

------------------------------------- | ------------------
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Ma = starp(P,ka,2,2);
Mb = starp(P,kb,2,2);
spoles(Ma)

spoles(Mb)

Loop-at-a-Time Robustness
The loop-at-a-time robustness measures are computed by separately plotting 
the transfer function that each δi sees. This corresponds to the (1,1) and (2,2) 
entries of M. Recall that, if δ2 ≡ 0, then the perturbed closed-loop system is 
stable for all δ1(s) satisfying

and that there is a perturbation δ1(s), with ||δ1||∞ = 1/||M11||∞

real imaginary frequency damping

–1.8000e+03 0.0000e+00 1.8000e+03 1.0000e+00

–1.2000e+03 0.0000e+00 1.2000e+03 1.0000e+00

–1.0000e+00 0.0000e+00 1.0000e+00 1.0000e+00

–1.0000e+00 0.0000e+00 1.0000e+00 1.0000e+00

real imaginary frequency damping

–1.5959e+01 0.0000e+00 1.5959e+01 l.0000e+00

–2.7899e+01 –1.6622e+01 3.2475e+01 8.5908e–01

–2.7899e+01 1.6622e+01 3.2475e+01 8.5908e–01

–4.7231e+01 –6.8509e+00 4.7725e+01 9.8964e–01

–4.7231e+01 6.8509e+00 4.7725e+01 9.8964e–01

–3.1101e+02 0.0000e+00 3.1101e+02 1.0000e+00

–1.2000e+03 0.0000e+00 1.2000e+03 1.0000e+00

–1.8000e+03 0.0000e+00 1.8000e+03 1.0000e+00

δ1 ∞
1

M11 ∞
-------------------<
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that causes instability. This is the robustness test for perturbations in channel 
1, with no uncertainty in channel 2. Similar comments apply for the robustness 
test for perturbations in channel 2, with no uncertainty in channel 1.

The results for Ma_g (solid) and Mb_g (dashed) are computed below, and shown 
in Figure 7-30.

Ma_g = frsp(Ma,omega);
Mb_g = frsp(Mb,omega);
vplot('liv,m',sel(Ma_g,1,1),'-',sel(Mb_g,1,1),'--');
vplot('liv,m',sel(Ma_g,2,2),'-',sel(Mb_g,2,2),'--');

With respect to these uncertainty weights, the closed-loop system associated 
with controller Ka (solid) has better loop-at-a-time margins than the closed-loop 
system associated with controller Kb (dashed) since the peak is lower. Note that 
this holds for both channels.

The robustness measure for simultaneous perturbations in channels 1 and 2 
requires the structured singular value, µ. Recall from Chapter 4 that the 
structured singular value of the matrix that the perturbation sees gives a 
nonconservative bound on the allowable simultaneous perturbations.

In this example there are two, scalar, unmodelled dynamics perturbations (i.e., 
complex blocks), so the uncertainty structure is

The µ-Tools representation of the uncertainty set, along with the µ calculation 
syntax are given as follows.

∆ := 
δ1 0

0 δ2

 : δ1 C δ2 C∈,∈

 
 
 
 
 
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Figure 7-30:  Loop-at-a-Time Robustness Tests

deltaset = [1 1;1 1];
[bnds_a,dvec_a,sens_a,pvec_a] = mu(Ma_g,deltaset);
[bnds_b,dvec_b,sens_b,pvec_b] = mu(Mb_g,deltaset);
vplot('liv,m',bnds_a,'-',bnds_b,'--');

Plots of µ∆(M(jω)) for both closed-loop systems are shown in Figure 7-31. Note 
that bnds_a and bnds_b each contain upper and lower bounds for µ, hence there 
are a total of four plots in Figure 7-31. In the case of two complex uncertainties, 
the upper and lower bound for µ are guaranteed to be equal, so it appears that 
there are only 2 plots in the figure.

The peak associated with controller ka is much larger than the peak associated 
with controller kb. Again, the size of the smallest block-diagonal perturbation 
which causes instability is equal to

Hence, although the margins to loop-at-a-time perturbations are better with 
controller ka, the margins with respect to simultaneous perturbations are 
significantly better using controller kb.
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Figure 7-31:  Structured Singular Value Plot

Constructing Destabilizing Perturbations
Constructing the smallest destabilizing perturbation for a closed-loop system 
is quite useful. This perturbation can provide physical insight to the types of 
variations for which the closed-loop system is very sensitive. The command 
dypert is used to construct the smallest destabilizing perturbation from the 
output of mu. The program dypert is a block-structured version of sisorat. The 
data required from the mu calculation is the perturbation vector, pvec, the block 
structure, deltaset, and the bounds for µ, bnds. Based on this data, dypert 
creates a real-rational, block structured perturbation that causes instability. 
The ||⋅ ||∞ norm of the block diagonal perturbation is equal to 1/(peak value µ) 
from the associated µ plot. From the µ plot in Figure 7-31, the peak lower bound 
µ value for Ma_g is about 1.47 and for Mb_g, 0.64. Therefore, the H∞ norm of the 
smallest destabilizing perturbation for Ma_g is , while for Mb_g we get 

. The following commands illustrate this fact.
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perta = dypert(pvec_a,deltaset,bnds_a);
pertb = dypert(pvec_b,deltaset,bnds_b);
[pkvnorm(sel(bnds_a,1,2)) 1/pkvnorm(sel(bnds_a,1,2))]
ans = 

1.4657  0.6823
[pkvnorm(sel(bnds_b,1,2)) 1/pkvnorm(sel(bnds_b,1,2))]
ans = 

0.6435  1.5540
hinfnorm(perta)
norm between 0.6823 and 0.6829
achieved near 0
hinfnorm(pertb)
norm between 1.554 and 1.556
achieved near 2.182

The destabilizing perturbations, perta and pertb, have the same structure as 
∆, block-diagonal. Therefore, the diagonal entries of perta and pertb will have 
norms of 0.68 and 1.55, respectively, with zero off diagonal entries. The 
following commands verify this fact. The output of these functions is not 
shown.

hinfnorm(sel(perta,1,1))
hinfnorm(sel(perta,1,2))
hinfnorm(sel(perta,2,1))
hinfnorm(sel(perta,2,2))
hinfnorm(pertb)
hinfnorm(sel(pertb,1,1))
hinfnorm(sel(pertb,1,2))
hinfnorm(sel(pertb,2,1))
hinfnorm(sel(pertb,2,2))
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The perturbed closed-loop can be formed with starp. Each perturbation results 
in a pair of imaginary axis eigenvalues at the frequency associated with the 
peak (across frequency) of µ∆(M(jω)).

pertclpa = starp(perta,Ma,2,2);
pertclpb = starp(pertb,Mb,2,2);
rifd(eig(pertclpa))

rifd(eig(pertclpb))

real imaginary frequency damping

–1.0201e–04 0.0000e+00 1.0201e–04 l.0000e+00

 1.0394e–14 –l.0000e–01 l.0000e–01 –1.0394e–13

 1.0394e–14 l.0000e–01 l.0000e–01 –1.0394e–13

–1.4313e+00 0.0000e+00 1.4313e+00 l.0000e+00

–1.0808e+03 0.0000e+00 1.0808e+03 l.0000e+00

–1.9334e+03 0.0000e+00 1.9334e+03 l.0000e+00

real imaginary frequency damping

-1.0550e+00 0.0000e+00 1.0550e+00 l.0000e+00

-8.0315e+00 -1.1012e+01 1.3630e+01 5.8927e-01

-8.0315e+00 1.1012e+01 1.3630e+01 5.8927e-01

 2.2808e-12 -3.5565e+01 3.5565e+01 -6.4132e-14

 2.2808e-12 3.5565e+01 3.5565e+01 -6.4132e-14

-9.6571e+01 0.0000e+00 9.6571e+01 l.0000e+00

-3.3746e+02 -9.4865e+01 3.5054e+02 9.6268e-01

-3.3746e+02 9.4865e+01 3.5054e+02 9.6268e-01

-1.2000e+03 0.0000e+00 1.2000e+03 l.0000e+00

-1.8000e+03 0.0000e+00 1.8000e+03 l.0000e+00



7 Robust Control Examples

7-44

Space Shuttle Robustness Analysis
This section outlines a robust stability and robust performance analysis of the 
Space Shuttle lateral axis flight control system during re-entry. It serves as a 
general illustration of the usefulness of the real and complex µ analysis 
methods.

The system is a simplified model of the Space Shuttle, in the final stages of 
landing, as it transitions from supersonic to subsonic speeds. The material in 
this chapter is based on the paper:

Doyle, J., K. Lenz, and A. Packard, “Design Examples Using µ Synthesis: Space 
Shuttle Lateral Axis FCS During Re-entry,” NATO ASI Series, Modelling, 
Robustness, and Sensitivity Reduction in Control Systems, vol. 34, 
Springer-Verlag, 1987.

The analysis procedure involves several steps:

1 Build uncertain model of plant.

2 Define performance specifications and uncertainty bounds.

3 Construct open-loop interconnection.

4 Close feedback loop with controller.

5 Perform a variety of real and complex µ analysis tests on the closed-loop 
system, and explore the impact of the uncertainty model (real vs. complex) 
on the robust stability and robust performance requirements.

6 Construct worst-case perturbations, and see their effect on the closed-loop 
system in the frequency and time domain.
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Aircraft Model: Rigid-Body
The rigid body model for the aircraft at Mach 0.9 is a four-state system, with 
states

An input/output block diagram of the aircraft is shown in Figure 7-32.

Figure 7-32:  Input-Output Description of the Aircraft

The three inputs to the aircraft are denoted by u,

The first input is the actual angular deflection of the elevon surface. The second 
is the actual deflection of the rudder surface. Finally, there is a lateral wind 
gust disturbance input, due to the winds that occur at this altitude.

There are four output variables of the aircraft. Three of these are states, while 
the fourth is the lateral acceleration at the pilot’s location, denoted ny (units of 
ny are ft/sec2).
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All variables in y are measured with inertial devices (gyroscopes and 
accelerometers) whose individual noise characteristics are discussed later.

Aircraft Model: Aerodynamic Uncertainty
The major source of uncertainty in the aircraft model (AC) is in the aerodynamic 
coefficients. These are standard aerodynamic parameters which express 
incremental forces and torques generated by incremental changes in sideslip, 
elevon, and rudder angles. This is a linear relationship, expressed as

The coefficients c•• are typically estimated based on theoretical predictions, 
numerical calculations, experiments in wind tunnels, and flight tests. At Mach 
0.9, the shuttle is in a transonic regime involving a combination of subsonic and 
supersonic flows. Theoretical, computational, and wind tunnel techniques are 
inaccurate at this flight condition, so with extremely limited flight data (early 
in the shuttle program), the coefficient uncertainty for the shuttle model is 
unusually large.

Uncertainty in these coefficients is modeled as a nominal value, plus a 
perturbation.

where the values of the r•• are

side force
yawing moment
rolling moment

cyβ cya cyr

cηβ cηa cηr

clβ cla clr

β
θele

θrud

=

cyβ cya cyr

cηβ cηa cηr

clβ cla clr

cyβ cya cyr

cηβ cηa cηr

clβ cla clr

ryβδyβ ryaδya ryrδyr

rηβδηβ rηaδηa rηrδηr

rlβδlβ rlaδla rlrδlr

+=
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and the perturbations δ•• are assumed to be fixed, unknown, real parameters, 
with each satisfying |δ••| ≤ 1. We use the notation r••. * δ•• to denote the 3 × 
3 perturbation matrix in the model for the aero coefficients, c••.

The aircraft model acnom has the nominal aerodynamic coefficients absorbed 
into the state-space data. In addition to the inputs µ and outputs y described 
earlier, acnom has three fictitious inputs and outputs such that the uncertain 
behavior of the aircraft AC is given by the linear fractional transformation in 
Figure 7-33.

The state-space model for acnom is created by the M-file mk_acnom. A listing of 
state-space model acnom is given in “Shuttle Rigid Body Model” at the end of 
this section.

Figure 7-33:  Uncertain Aircraft Model

ryβ rya ryr

rηβ rηa rηr

rlβ rla rlr

2.19 1.33– 0.37–

1.52– 1.35 0.87
0.72– 0.52 0.24

=
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Actuator Models
The aircraft has two controlled inputs, rudder command, and elevon command. 
Each actuator is modeled with a second order transfer function, as well as a 
second order delay approximation to model the effects of the digital 
implementation.

The model for the rudder is

Here, urud is the electrical command that the controller will generate to move 
the rudder. The transfer function Wdelay is a second order approximation of a 
delay, to model the effects of the digital implementation of the control system. 
In particular

with ωdel = 173 rad/s, and ξdel = 0.866. The transfer function

models the physical devices (motors, inertias, etc.) involved in actually moving 
the rudder. The variable θrud is the actual deflection of the rudder surface, 
while urud represents the command to the rudder system. The values of the 
parameters are ξrud = 0.75, ωrud =21 rads/sec.

A similar model is used for the elevon actuation system. The parameters in 
that case are ξele = 0.72, ωele =14 rads/sec, with an identical second order delay 
model.

The state-space models for the actuators are created by the M-file mk_act. 
Since the closed-loop performance objectives include penalties on the 

!2rud
s2+2�rud!ruds+!

2
rud

Wdelay

urudvrud�rud
���

Wdelay s( )
1 2ξdel– s ωdel⁄( ) s2 ωdel

2⁄( )+

1 2ξdel+ s ωdel⁄( ) s2 ωdel
2⁄( )+

------------------------------------------------------------------------------=

ωrud
2

s2 2ξrudωruds ωrud
2

+ +
------------------------------------------------------------
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deflections, rates, and accelerations of the control surfaces, the state-space 
models created in mk_act each have three outputs, as shown below.

Exogenous Disturbances, Noises, and Commands
There are three sources of exogenous signals:

• Wind gusts

• Sensor noise

• Pilot bank-angle command

In the H∞ framework, all time domain signals are modeled as the unit ball in 
L2, filtered by problem dependent weighting functions which reflect typically 
occurring signals in the application. In addition to the L2 gain, the H∞ norm 
also has an interpretation in terms of gain from sinusoids to sinusoids. Now, 
suppose h represents one of the exogenous signals, and Wh is the associated 
stable weighting function. Then, the signal h is assumed to be any signal from 
the set

h ∈ {Whηh : ||ηh||2 ≤ 1}

By choosing the form of Wh(s), the spectral content of such signals h can be 
shaped.

• Lateral Wind Gusts: The set of lateral wind gusts is modeled as

The set on the right-hand side of the equation models the typical wind gusts 
that the shuttle will encounter at this flight condition.

actrud �

�

�

�

urud

�rud

_�rud

��rud

actele �

�

�

�

uele

�ele

_�ele

��ele

dgust Wgustηgust : Wgust 30=
1 s 2⁄+

1 s+
-------------------, ηgust 2 1≤

 
 
 

.∈
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• Sensor Noise: Each measurement is corrupted with sensor noise which 
becomes more severe with increasing frequency. Since p and r are measured 
with comparable gyroscopes, their sensor noise weights are identical,

These weighting functions imply a low frequency measurement error in p 
and r of 0.0003 rads/sec, and a high frequency error of 0.015 rads/sec. The 
model of the measured value of p, denoted pmeas, is given by

pmeas = p + Wpηp

where ηp is an arbitrary signal, with ||ηp||2 ≤ 1. This type of weighted, additive 
L2 sensor noise is assumed for each of the 4 measured variables.

The measurement of φ is obtained from a navigation package at a reduced 
sample rate, so its weight is chosen to be

which is relatively large in the mid-to-high frequency range. The sensor 
noise weight on the ny accelerometer is

For the variables r, φ, and ny, we have

• Pilot Bank-Angle Command: In this problem, the pilot (or autopilot) takes 
the shuttle through a series of sweeping “S” turns to slow the vehicle down. 

WP Wr 0.00031 s/0.01+
1 s/0.5+

--------------------------= =

Wφ 0.00071 s/0.01+
1 s/2+

--------------------------=

Wny
0.251 s/0.05+

1 s/10+
--------------------------=

rmeas r Wrηr+=

φmeas φ Wφηφ+=

nymeas
ny Wny

ηny
+=
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These require accurate tracking of a bank-angle command. Typical 
bank-angle commands are modeled as

φcmd = Wφcmdηφcmd,

where ηφcmd is assumed to be an arbitrary signal with ||ηφcmd||2 ≤ 1. In this 
example, the weight on the bank-angle command is chosen as

The particular choice roughly implies that the bank-angle commands are 
dominated by low frequency signals, with a maximum magnitude of 
approximately 0.5 radians.

The noise weighting functions are denoted by Wnoise = diag{Wp, Wr, Wφ, } 
in the control block diagram.

Errors
There are several variables that are to be kept small in the face of the 
exogenous signals listed in the previous section. In this context, these variables 
will be considered errors.

Actuator signal levels: the angular position, angular rates, and angular 
accelerations of the rudder (⋅ rud) and elevon (⋅ ele) surfaces should remain 
reasonably small in the face of the exogenous signals. The signals are weighted 
to give an actuator error vector of

Wφcmd := 0.5 1 s/2+
1 s/0.5+
----------------------

Wny

eact

ee

ee·

ee

er

er·

er

 := 

4 θele

θ·ele

0.005 θele

2 θrud

0.2 θ·rud

0.009 θrud

=
..

..

..

..
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This performance specification can be loosely interpreted as a requirement 
that the closed-loop system should, under the excitation of the modeled 
exogenous signals, maintain θele to below 0.25 radians,  to below 1 rad/
sec,  to below 200 rads/sec2, and so on for the rudder variables. For 
notational purposes, let Wact be the 6 × 6 constant matrix so that

• Performance variables:
- The ideal bank angle response (φideal) of the shuttle to a bank-angle 

command (φcmd) is

where ω = 1.2 rad/sec, and ξ = 0.7. The bank-angle tracking error is defined 
as φ – φideal.

- Turn coordination: in an ideal turn, the bank angle, and the yaw rate are 
related. For this aircraft, a turn coordination error is defined as

rp := r – 0.037φ

- In a turn, it is desired that the pilot feel very little lateral acceleration, 
hence, the lateral acceleration variable, ny, is an error.

These error signals are weighted by frequency dependent weights to give 
a performance error vector as

θ·ele
θele
..

eact Wact

θele

θ·ele

θele

θrud

θ·rud

θrud

=

..

..

φideal := 1

1 2 ξ(s/ω ) (s/ω )2
+⋅+

---------------------------------------------------------φcmd
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For notational purposes, let Wperf be a 3 × 5 transfer function matrix so 
that

The error weight on the lateral acceleration indicates a tolerance for low 
frequency accelerations of 1.25 ft/sec2, which is relaxed at high frequency, 
allowing accelerations up to 12.5 ft/sec2. Again, these specifications 
correspond to ny errors produced by the exogenous signal set (wind gusts, 
measurement noises, and bank angle commands). Similar interpretation 
is given to the other performance variables.

LFT Aero-Coefficient Uncertainty
The perturbations in the aero-coefficients can be written as an LFT (linear 
fractional transformation) on a structured uncertainty matrix. Define constant 
matrices WL ∈ R3×9 and WR ∈ R9×3 such that

for all δ••. This is easily done with the permutation matrices WL and WR shown 
below.

eperf := 

0.8 1 s+
1 s/0.1+
---------------------- 0 0

0 500 1 s+
1 s/0.01+
-------------------------- 0

0 0 250 1 s+
1 s/0.01+
--------------------------

ny

r 0.037φ–

φ φideal–

eperf Wperf

p
r

ny

φ
φideal

=

WL diag[δyβ,δηβ,δlβ,δya,…,δlr ] WR⋅ ⋅
ryβδyβ ryaδya ryrδyr

rηβδηβ rηaδηa rηrδηr

rlβδlβ rlaδla rlrδlr

=
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Create Open-Loop Interconnection
The aircraft model, actuator models, and weighting functions discussed in the 
previous sections can be constructed from M-files.

mk_acnom;
mk_act;
mk_wts;

The open-loop interconnection structure, which includes the uncertainty model 
and the performance objectives, is shown in Figure 7-34.

WR
T

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

=

WL

2.19 0 0 1.33– 0 0 0.37– 0 0
0 1.52– 0 0 1.35 0 0 0.87 0
0 0 0.72– 0 0 0.52 0 0 0.24

=
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Figure 7-34:  Shuttle Interconnection Structure

The M-file mk_olic uses the sysic command to create a SYSTEM matrix 
description of the open-loop interconnection structure. In the workspace, the 
open-loop system is denoted by olic, and has 23 states, 23 outputs, and 17 
inputs.

mk_olic;
minfo(olic)

A schematic diagram, with the specific input/output ordering for olic, is shown 
in Figure 7-35.
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Figure 7-35:  Schematic Diagram of Space Shuttle olic
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Controllers
In this section, the robustness properties of three different controllers are 
analyzed using µ. The controllers receive four sensor measurements along with 
the φ command signal and produce two control signals for the elevon and 
rudder commands. The controller block diagram is shown below.

In this example, each controller has different characteristics:

• k_h is designed to optimize H∞ performance, under the assumption that 
there is no model uncertainty;

• k_mu is designed with the D – K iteration approach to µ -synthesis;

• k_x is constructed to be a tradeoff between the two controllers

The µ-Tools commands to design the H∞ optimal controller, k_h, are:

olic_h = sel(olic,[10:23],[10:17]);
minfo(olic_h)
k_h = hinfsyn(olic_h,5,2,0,5,0.1);

The first command, sel, removes the aero-coefficient uncertainty channels, 
leaving only the exogenous signals and errors, and feedback signals. The third 
command, hinfsyn, designs a suboptimal H∞ controller for the open-loop 
system olic_h. This controller measures five signals, and generates two 
control signals.

It is simple to check some characteristics of the controller and the closed-loop 
system

minfo(k_h)
clp_h = starp(olic,k_h,5,2);
rifd(spoles(clp_h))
rifd(spoles(k_h))

K
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The two other controllers have already been designed and stored in the file 
shutcont.mat.

load shutcont
minfo(k_x)
minfo(k_mu)

Nominal Frequency Responses
The closed-loop system is constructed using the star product command starp.

In the closed-loop system, there are six exogenous signals (the six η signals: 
four sensor noises, wind gust, bank angle command) and nine errors (weighted 
performance error vector and the weighted actuator error vector). The nominal 
performance objective is that this multivariable transfer function matrix 
should have an H∞ norm less than 1. Using µ-Tools, it is easy to evaluate this 
performance criterion. Simply form the closed-loop system, calculate its 
frequency response, and plot the norm of the appropriate transfer function 
versus frequency.
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omega = logspace(-2,3,30);
clp_h = starp(olic,k_h,5,2);
clp_hg = frsp(clp_h,omega);
clp_x = starp(olic,k_x,5,2);
minfo(clp_x)
clp_xg = frsp(clp_x,omega);
minfo(clp_xg) 
clp_mu = starp(olic,k_mu,5,2);
clp_mug = frsp(clp_mu,omega);

Note that the closed-loop systems have additional inputs and outputs from the 
nine aero-perturbation channels. The relevant exogenous signals and errors 
are selected (using sel) before calculating the maximum singular value 
(vnorm).

np_hg = sel(clp_hg,[10:18],[10:15]);
np_xg = sel(clp_xg,[10:18],[10:15]);
np_mug = sel(clp_mug,[10:18],[10:15]);
vplot('liv,m',vnorm(sel(clp_hg,10:18,10:15)),...

vnorm(sel(clp_xg,10:18,10:15)),...
vnorm(sel(clp_mug,10:18,10:15)))

title('NOMINAL PERFORMANCE: ALL CONTROLLERS')

Figure 7-36:  Nominal Performance of k_h, k_x, and k_mu
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Note that the best nominal performance is achieved by controller k_h, as seen 
in Figure 7-36. This is not surprising, since it was designed specifically with 
these disturbances and errors in mind. Relatively, the performance from k_mu 
is poor, though it does meet the nominal performance objective. In later 
calculations, it will become clear that the degradation in nominal performance 
is offset by a much greater insensitivity to variations in the aerodynamic 
coefficients.

Robust Stability
Using µ, the robust stability characteristics of each closed-loop system can be 
evaluated. The uncertain parameters (δyβ,. . .,δlr) can be assumed to be real, 
representing uncertainty in the constant aerodynamic coefficients. However, 
the flow around the vehicle is very complex, and the quasi-steady implication 
of constant aerodynamic coefficients is somewhat simplistic. Consequently, for 
a more conservative analysis, the uncertain parameters can be treated as 
complex. In this section, both models of uncertainty will be analyzed, and 
compared. Refer to Chapter 4, “Modeling and Analysis of Uncertain Systems” 
for more detail on the interpretations.

This motivates two separate representations of the uncertainty set,

where the perturbations represent uncertainty in the aero-coefficients. Note 
that the first set contains all complex perturbations, while the second set 
includes only real perturbations.

In the µ-Tools syntax, these are represented as

delsetrs_C = ones(9,2);
delsetrs_R = [-ones(9,1) zeros(9,1)];

Here, the lower case rs refers to robust stability (as opposed to robust 
performance, rp, which will be addressed later).

The perturbation inputs/outputs from the frequency responses are selected for 
a robust stability µ test. The input/output channels associated with the 
performance criterion are not used in the robust stability µ test. A diagram of 
the closed-loop system is shown in Figure 7-37.

∆C := diag δ1,δ2,…,δ9[ ] : δi C∈{ }

∆R := diag δ1,δ2,…,δ9[ ] : δi R∈{ }
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Figure 7-37:  Schematic Design of clp_RS

clp_hgRS = sel(clp_hg,1:9,1:9);
clp_xgRS = sel(clp_xg,1:9,1:9);
clp_mugRS = sel(clp_mug,1:9,1:9);

Calculate µ across frequency, and look at µ plots. Start with the complex 
uncertainty structure.

[bnds_h,dv_h,sens_h,rp_h]=mu(clp_hgRS,delsetrs_C);
[bnds_x,dv_x,sens_x,rp_x]=mu(clp_xgRS,delsetrs_C);
[bnds_mu,dv_mu,sens_mu,rp_mu]=mu(clp_mugRS,delsetrs_C);
vplot('liv,d',bnds_h,'-',bnds_x,'--',bnds_mu,'-.')
title('ROBUST STABILITY OF CLOSED-LOOP: COMPLEX')
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Figure 7-38:  Complex Robust Stability µ Analysis of k_h, k_x, and k_mu

According to Figure 7-38, the k_mu controller has the best robust stability 
properties when the perturbations are treated as complex (dynamic). The peak 
of the lower bound, 0.9, implies that there is a diagonal complex perturbation 
of size, , that causes instability. The peak of the upper bound, approximately 
0.99, implies that for diagonal perturbations smaller than , the closed-loop 
system remains stable. The gap between the upper and lower bound can be 
reduced by using the “c” option in the mu command. Without this option, the 
upper bound from mu is a computational approximation to

that can be refined (option “c”) at the expense of slower execution. Using the “c” 
option reduces the upper bound peak to 0.9, so that the complex µ analysis 
gives a tight estimate on the size of the smallest destabilizing perturbation.

Similar interpretations are possible for the closed-loop systems with 
controllers k_h and k_x, though, since the µ plots have larger peaks, the bound 
on allowable perturbations is smaller. Hence, the closed-loop system with the 
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controller k_mu achieves robust stability to complex perturbations, whereas the 
other controllers do not.

The closed-loop system is also analyzed treating the aerodynamic uncertainty 
as real perturbations with the µ-Tools mu command.

[rbnds_h,rrp_h] = mu(clp_hgRS,delsetrs_R);
[rbnds_x,rrp_x] = mu(clp_xgRS,delsetrs_R);
[rbnds_mu,rrp_mu] = mu(clp_mugRS,delsetrs_R);
vplot('liv,d',rbnds_h,'-',rbnds_x,'--',rbnds_mu,'-.')
title('ROBUST STABILITY OF CLOSED-LOOP: REAL')

Figure 7-39:  Real Robust Stability µ Analysis of k_h, k_x, and k_mu

The k_h controller has the best robust stability properties, when the 
perturbations are treated as real, as seen in Figure 7-39. This is in contrast to 
the robust stability analysis with complex perturbation where k_mu exhibited 
the best properties. The peak of the upper bound, approximately 0.66, implies 
that for diagonal, real perturbations smaller than , the closed-loop system 
remains stable. The lower bound in Figure 7-39 is often 0 and does not converge 
for all values of frequency, leading to a large gap between the upper and lower 
bound. This gap can be reduced by adding a small amount of complex 
perturbation to the pure real perturbation. A detailed discussion of this 
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approach can be found in the “Mixed Real/Complex Structured Singular Value” 
section in Chapter 4.

Robust Performance
Using µ, the robust performance characteristics of each closed-loop system can 
be evaluated. The uncertain parameters are treated as real parameters in this 
analysis. These parameters can also be treated as complex perturbations, 
though this is not done in this section.

The appropriate block structure for the robust performance test is

∆P := {diag[δ1,δ2,. . .,δ9,∆10] : δi ∈ R, ∆10 ∈ C6×9}

which is simply an augmentation of the original real robust stability 
uncertainty set, ∆R, with a complex 6 × 9 full block to include the performance 
objectives. Recall from the “Using m to Analyze Robust Performance” section 
in Chapter 4: H∞ performance objectives are always represented with a full, 
complex block. Hence,

delsetrp_R = [delsetrs_R;6 9]

The µ calculations are performed on the entire 18 × 15 closed-loop matrix, 
which includes the perturbation channels and the exogenous signals and 
errors. The command mu is called with both real and complex blocks.

[bnds_h,ph] = mu(clp_hg,delsetrp_R);
[bnds_x,px] = mu(clp_xg,delsetrp_R);
[bnds_mu,p_mu] = mu(clp_mug,delsetrp_R);
vplot('liv,d',bnds_h,'-',bnds_x,'--',bnds_mu,'-.')
title('ROBUST PERFORMANCE OF ALL CONTROLLERS')
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Figure 7-40:  Robust Performance µ Plots of k_h, k_x, and k_mu

The axis is selected in Figure 7-40 to show a comparison of controllers k_x and 
k_mu. At low frequency, the closed-loop robust performance with k_h 
implemented gets as bad as 14. The closed-loop system using controller k_x 
achieves a robust performance µ value of 1.56, while controller k_mu achieves a 
robust performance µ value of 1.22.

Worst-case Perturbations
Using a µ calculation, we have seen that all controllers achieve robust-stability 
to the 9 × 9 real uncertainty matrix which represents uncertainty in the 
aero-coefficients. However, the performance of each closed-loop system 
degrades differently under LFT real, diagonal perturbations. We use wcperf to 
compute the worst-case performance degradation as well as the worst-case, 
norm 1, perturbation. The worst-case perturbation of norm 1 will be used in the 
next section for uncertain time-domain simulations.

[deltabadh,wcp_lowh,wcp_upph] = wcperf(clp_hg,delsetrs_R,.05,4);
[deltabadx,wcp_lowh,wcp_upph] = wcperf(clp_xg,delsetrs_R,.05,10);
[deltabadmu,wcp_lowmu,wcp_uppmu]= wcperf(clp_mug,delsetrs_R,.05,10);
vplot(wcp_lowh,wcp_upph,wcp_lowx,wcp_uppx,wcp_lowmu,wcp_uppmu)
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Figure 7-41:  Performance Degradation of Closed-Loop

Using k_h, it is clear that the closed-loop performance degrades rapidly and 
severely. It would not be an acceptable controller in the real aircraft. 

Note  Optimizing the H∞ norm of some closed-loop transfer function does not, 
in any way, guarantee robustness to perturbations at other points in the 
feedback loop.

Using k_x and k_mu, reasonable robustness properties (on the order of the 
original specifications) are attained. The controller k_x achieves better 
nominal performance (i.e., at ||∆|| = 0), at the expense of more rapid potential 
performance degradation under uncertainty. Both closed-loop systems 
potentially degrade to unacceptable (performance norm > 1) performance with 
less than one-half of the original modeled uncertainty. At that level of 
uncertainty, the closed-loop system with k_mu degrades more gracefully. This 
type of tradeoff curve illustrates some of the differences between the two 
controllers, and can be helpful in understanding the tradeoffs involved.
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Time Simulations
The open-loop simulation interconnection, Figure 7-42, is similar to olic, but 
contains none of the weighting functions. It is used exclusively for nominal and 
perturbed time-domain simulations, where unweighted time signals will be 
calculated and plotted.

mk_olsim;
minfo(olsim)

Figure 7-42:  Open-Loop Simulation Model

For the purposes of this exercise, the four sensor noises have been eliminated 
from the simulation model. It is easy to modify mk_olsim.m to include these if 
desired.

The LFT time simulation GUI, simgui, is used to simulate the nominal and 
perturbed time response of the three controllers. For more details on simgui 
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see the “LFT Time Simulation User Interface Tool: simgui” section in Chapter 
6.

The main performance objective is bank angle tracking, so the response to a 0.5 
radian step input for φcmd is investigated. The gust input is set to zero in these 
simulations. This data is entered into the simgui Main window Input Signal 
editable text. Note that φcmd is the 11th input of olsim and the second 
non-perturbation input. The output signals of interest are φ, ny, r – cφ, and φ – 
φideal, which are outputs 10 through 13 of olsim or the first through fourth 
outputs after the perturbation has been included. In the simgui Main window, 
input olsim into the Plant editable text. Figure 7-43 shows the main 
simulation window for the nominal and perturbed response of controller k_x.

Figure 7-43:  simgui Main Window for Shuttle Time Simulation
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We are interested in the nominal and perturbed closed-loop response in the 
presence of a worst-case, real perturbation. This corresponds to the top nine 
channels of olsim, the aero-coefficient perturbations. Therefore, worst-case 
real perturbations of size 1 in the aero-coefficients for k_x and k_mu are 
calculated using the wcperf command. These perturbations are:

badpertx is used in the perturbed response for controller k_x and badpertmu is 
used as the worst-case real perturbation for controllers k_h and k_mu. This data 
is input into the Perturbation editable text in the simgui main window.

The controllers are implemented in discrete-time at a sample-rate of 20Hz on 
the shuttle. To replicate the same implementation, a sample-data time 
simulation is performed. This simulation is available under the Options menu 
in the Main simulation window. Therefore, the continuous-time controllers, 
k_x, k_h, and k_mu, must be discretized for the sampled-data time simulation. 
The continuous-time plant, olsim, is simulated at 200Hz and the controllers at 
20Hz as seen in the simgui parameter window, Figure 7-44.

Figure 7-44:  simgui Parameter Window for Shuttle Time Simulation

badpertx = diag([ 1 1 1 –.87 1 1 –.28 –1 –1 ])

badpertmu = diag([ –1 –1 –1 1 1 1 –1 –1 –1 ])
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The nominal and perturbed closed-loop responses with k_x, k_h, and k_mu 
implemented are shown in Figure 7-45 and 7-46. As expected, the time domain 
simulations reinforce the conclusions that were reached in the frequency 
domain analysis. The nominal performance associated with k_h is superb, but 
degrades significantly with the aerodynamic uncertainty. In that respect, the 
controller k_mu performs the best, nearly achieving all of the robust 
performance objectives. The nominal and perturbed time response of other 
performance variables can also be easily investigated.
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Figure 7-45:  Closed-Loop Nominal and Perturbed Time Response, k_x (top) 
and k_h

nominal (solid line) perturbed (dashed line)
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Figure 7-46:  Closed-Loop Nominal and Perturbed Time Response, k_mu

Conclusions
This exercise illustrated the use of the µ-Tools software to analyze the robust 
stability and robust performance objectives on a complicated, uncertain plant 
model.

There is an important feature of the mu software that cannot be overlooked or 
overemphasized. These algorithms calculate both upper and lower bounds for 
µ, and produce worst-case perturbations which provide the lower bound. The 
perturbations, and their effects, can be analyzed in both the frequency domain 
and time domain. In practice, the bad perturbations are also used in high 
fidelity, nonlinear simulations of the closed-loop system to discover limitations 
and unforeseen problems.

Nominal (solid line) Perturbed (dashed line)
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Although this problem did not have repeated uncertain parameters (each δ•• 
appeared only once), the algorithms and software do handle these cases, and 
the reader is referred back to the “Complex Structured Singular Value” section 
in Chapter 4 for details.

Space Shuttle References
Doyle, J., K. Lenz, and A. Packard, “Design Examples Using µ Synthesis: Space 
Shuttle Lateral Axis FCS During Reentry,” NATO ASI Series, Modelling, 
Robustness, and Sensitivity Reduction in Control Systems, vol. 34, 
Springer-Verlag, 1987.

Shuttle Rigid Body Model
The perturbed, state-space rigid body model of the aircraft, acnom, is shown in 
the following figure.



7 Robust Control Examples

7-74

acnom A_acnom B_acnom

C_acnom D_acnom
=

A_acnom

9.5e– 2– 1.4e 1– 9.9e– 1– 3.6e 2–

3.6e– 0+ 4.3e– 1– 2.8e 1– 0
4.0e 1– 1.3e– 2– 8.1e– 2– 0

0 1 1.4e– 1– 0

=

B_acnom

1.3e 2– 0 0 1.2e– 2– 1.0e 2– 1.1e– 7–

0 3.1e– 2– 3.1e– 0+ 6.6e 0+ 1.3e 0+ 4.1e– 6–

0 1.9e– 1– 6.4e– 2– 3.8e 1– 2.6e– 1– 4.5e 7–

0 0 0 0 0 0

=

C_acnom

1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

6.8e– 1+ 1.7e– 0+ 4.1e– 0+ 3.7e– 5–

0 0 0 1.0e 0+

=

D_acnom

0 0 0 0 0 1.2e 6–

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

1.1e 1+ 1.1e– 1+ 1.1e– 1+ 2.7e 1+ 3.0e– 0+ 7.8e– 5–

0 0 0 0 0 0

=



HIMAT Robust Performance Design Example

7-75

HIMAT Robust Performance Design Example
This section contains an idealized example of µ-synthesis as applied to the 
design of a pitch axis controller of an experimental highly maneuverable 
airplane, HIMAT. The airplane model is taken from aerodynamic data for the 
HIMAT vehicle. The problem is posed as a robust performance problem, with 
multiplicative plant uncertainty at the plant input and plant output weighted 
sensitivity function as the performance criterion. The design procedure 
presented in this section involves several steps:

1 Specification of closed-loop feedback structure.

2 Specification of model uncertainty and performance objectives in terms of 
frequency-dependent weighting matrices.

3 Construction of open-loop interconnection for control synthesis routines.

4 Loop shape controller design for the open-loop interconnection.

5 H∞ optimal controller design for the open-loop interconnection.

6 Analysis of robust performance properties of the resulting closed-loop 
systems using the structured singular value, µ (µ-analysis).

7 Use of frequency dependent similarity scalings, obtained in the µ-analysis 
step, to scale the open-loop interconnection, and redesign H∞ controller 
(iterating on steps 5, 6, and 7 constitutes the approach to µ-synthesis called 
“D – K iteration,” which is described in detail in Chapter 5).

The main objective of this section is to illustrate µ-synthesis design methods 
(steps 1, 2, 3, 5, 6, 7). The loop shape controller (step 4) is included to illustrate 
that robust stability and nominal performance do not necessarily imply robust 
performance.

Many of the command outputs are not displayed in the text, since it is assumed 
that the reader is simultaneously working through the example on a computer.
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HIMAT Vehicle Model and Control Objectives
The HIMAT vehicle model and control objectives are taken from a paper by 
Safonov et al. (1981). The interested reader should consult this paper as well 
as Hartman et al. (1979) and Merkel and Whitmoyer (1976) for more details. 
The HIMAT vehicle was a scaled, remotely piloted vehicle (RPV) version of an 
advanced fighter, which was flight tested in the late 1970s. The actual HIMAT 
vehicle is currently on display in the Smithsonian National Aerospace Museum 
in Washington, D.C. The design example will consider only the longitudinal 
dynamics of the airplane. These dynamics are assumed to be uncoupled from 
the lateral-directional dynamics. Linearized models for a collection of flight 
conditions can be found in [HartBG]. The state vector consists of the vehicle’s 
basic rigid body variables.

xT = (δv, α, q, θ)

representing the forward velocity, angle-of-attack, pitch rate, and pitch angle, 
respectively. The flight path angle (γ) is defined as γ = θ – α. The state variables 
used to describe motions in the vertical plane are given below.

δv — perturbations along the velocity vector

α — angle between velocity vector and aircraft's longitudinal axis

q — rate-of-change of aircraft attitude angle

θ — aircraft attitude angle

The control inputs are the elevon (δe) and the canard (δc). The variables to be 
measured are α and θ.

There are three longitudinal maneuvers to be considered.

Vertical Translation: Control the vertical velocity at a constant θ (α varies). 
This implies that the attitude is held constant as the velocity vector rotates.

Pitch Pointing: Control the attitude at a constant flight path angle (i.e., θ – α 
= constant). In this case the velocity vector does not rotate.

Direct Lift: Control the flight path angle at constant angle-of-attack (i.e., 
γ = θ). This maneuver produces a normal acceleration response without 
changing the angle-of-attack.

These control objectives are accounted for within the performance 
specification.
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Closed-Loop Feedback Structure
A diagram for the closed-loop system, which includes the feedback structure of 
the plant and controller, and elements associated with the uncertainty models 
and performance objectives, is shown inFigure 7-47.

Figure 7-47:  HIMAT Closed-Loop Interconnection Structure

The dashed box represents the true airplane, with associated transfer function 
G. Inside the box is the nominal model of the airplane dynamics, Gnom, and two 
elements, wdel and ∆G, which parametrize the uncertainty in the model. This 
type of uncertainty is called multiplicative uncertainty at the plant input, for 
obvious reasons. The transfer function wdel is assumed known, and reflects the 
amount of uncertainty in the model. The transfer function ∆G is assumed to be 
stable and unknown, except for the norm condition, ||∆G||∞ < 1. The performance 
objective is that the transfer function from d to e be small, in the ||⋅ ||∞ sense, for 
all possible uncertainty transfer functions ∆G. The weighting function WP is 
used to reflect the relative importance of various frequency ranges for which 
performance is desired.

The control design objective is to design a stabilizing controller K such that for 
all stable perturbations ∆G(s), with ||∆G||∞ < 1, the perturbed closed-loop system 
remains stable, and the perturbed weighted sensitivity transfer function,

S(∆G) := WP(I + P(I + ∆GWdel)K)–1

has ||S(∆G)||∞ < 1 for all such perturbations. Recall that these mathematical 
objectives exactly fit in the structured singular value framework.
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Uncertainty Models
The airplane model we consider has two inputs: elevon command (δe) and 
canard command (δc); and two measured outputs: angle-of-attack (α) and pitch 
angle (θ).

A first principles set of uncertainties about the aircraft model would include:

• Uncertainty in the canard and the elevon actuators. The electrical signals 
that command deflections in these surfaces must be converted to actual 
mechanical deflections by the electronics and hydraulics of the actuators. 
This is not done perfectly in the actual system, unlike the nominal model.

• Uncertainty in the forces and moments generated on the aircraft, due to 
specific deflections of the canard and elevon. As a first approximation, this 
arises from the uncertainties in the aerodynamic coefficients, which vary 
with flight conditions, as well as uncertainty in the exact geometry of the 
airplane. An even more detailed view is that surface deflections generate the 
forces and moments by changing the flow around the vehicle in very complex 
ways. Thus there are uncertainties in the force and moment generation that 
go beyond the quasi-steady uncertainties implied by uncertain aerodynamic 
coefficients.

• Uncertainty in the linear and angular accelerations produced by the 
aerodynamically generated forces and moments. This arises from the 
uncertainty in the various inertial parameters of the airplane, in addition to 
neglected dynamics such as fuel slosh and airframe flexibility.

• Other forms of uncertainty that are less well understood.

In this example, we choose not to model the uncertainty in this detailed 
manner, but rather to lump all of these effects together into one full-block 
uncertainty at the input of a four-state, nominal model of the aircraft rigid 
body. This nominal model has no (i.e., perfect) actuators and only quasi-steady 
dynamics. The nominal model for the airplane is loaded from the mutools/subs 
directory. 
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The simple model of the airplane has four states: forward speed (v), 
angle-of-attack (α), pitch rate (q) and pitch angle (θ); two inputs: elevon 
command (δe) and canard command (δc); and two measured outputs: 
angle-of-attack (α) and pitch angle (θ).

mkhimat;
minfo(himat)
seesys(himat,'%9.le')

The partitioned matrix represents the [A B; C D] state space data. Given this 
nominal model himat (i.e., Gnom(s)) we also specify a stable, 2 × 2 transfer 
matrix Wdel(s), called the uncertainty weight. These two transfer matrices 
parametrize an entire set of plants,  , which must be suitably controlled by the 
robust controller K.

 := {Gnom(I + ∆GWdel) : ∆G stable, ||∆G||∞ ≤ 1}.

All of the uncertainty in modeling the airplane is captured in the normalized, 
unknown transfer function ∆G. The unknown transfer function ∆G(s) is used to 
parametrize the potential differences between the nominal model Gnom(s), and 
the actual behavior of the real airplane, denoted by G. The dependence on 
frequency of the uncertainty weight indicates that the level of uncertainty in 
the airplane’s behavior depends on frequency.

In this example, the uncertainty weight Wdel is of the form Wdel(s) := wdel(s)I2, 
for a given scalar valued function wdel(s). The fact that the uncertainty weight 
is diagonal, with equal diagonal entries, indicates that the modeled 
uncertainty is in some sense a round ball about the nominal model Gnom. The 
scalar weight associated with the multiplicative input uncertainty is 

-2.3e-02 -3.7e+01 -1.9e+01 -3.2e+01 | 0.0e+00 0.0e+00

0.0e+00 -1.9e+00 9.8e-01 0.0e+00 | -4.1e-01 0.0e+00

1.2e-02 -1.2e+01 -2.6e+00 0.0e+00 | -7.8e+01 2.2e+01

0.0e+00 0.0e+00 1.0e+00 0.0e+00 | 0.0e+00 0.0e+00

------------------------------------ | -----------------

0.0e+00 5.7e+01 0.0e+00 0.0e+00 | 0.0e+00 0.0e+00

0.0e+00 0.0e+00 0.0e+00 5.7e+01 | 0.0e+00 0.0e+00
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constructed using the command nd2sys. The weight chosen for this problem is 
.

wdel = nd2sys([1 100],[1 10000],50);

The set of plants that are represented by this uncertainty weight is

The weighting function is used to normalize the size of the unknown 
perturbation ∆G. At any frequency ω, |ωdel(jω)| can be interpreted as the 
percentage of uncertainty in the model at that frequency.

omega = logspace(0,5,50);
wdel_g = frsp(wdel,omega);
vplot('liv,lm',wdel_g)
title('Multiplicative Uncertainty Weighting Function')
xlabel('Frequency (rad/s)')

The particular uncertainty weight chosen for this problem indicates that at low 
frequency, there is potentially a 50% modeling error, and at a frequency of 173 
rad/sec, the uncertainty in the model is up to 100%, and could get larger at 
higher and higher frequencies. A frequency response of wdel is shown in 
Figure 7-48.

Specifications of Closed-Loop Performance
The performance of the closed loop system will be evaluated using the output 
sensitivity transfer function, (I + GK)–1. Good performance will be 
characterized in terms of a weighted H∞ norm on this transfer function. Given 
a 2 × 2 stable, rational transfer matrix WP, we say that nominal performance 
is achieved if ||WP(I + GK)–1||∞ < 1. As in the uncertainty modeling, the 
weighting function Wp is used to normalize specifications, in this case, to define 
performance as whether a particular norm is less than 1.

In this problem, we choose a simple weight of the form WP(s) = wp(s)I2, where 
.

wdel
50 s 100+( )
s 10000+

-------------------------------=

 := Gnom I2
50 s 100+( )
s 10000+

------------------------------∆G s( )+ 
   : ∆G s( ) stable, ∆G ∞ 1≤

 
 
 

wp s( ) 0.5 s 3+( )
s 0.03+

--------------------------=
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Figure 7-48:  HIMAT Multiplicative Uncertainty Weighting Function

wp = nd2sys([1 3],[1 0.03],0.5);

For performance to be achieved, ||WP(I + GK)–1||∞ < 1, and since WP is a scalar 
(times a 2 × 2 identity), the maximum singular value plot of the sensitivity 
transfer function (I + GK)–1 must lie below the plot of  at every frequency. 

That is, ||WP(I + GK)–1||∞ < 1, if and only if at all frequencies, 

.

omega = logspace(-3,2,50);
wp_g = frsp(wp,omega);
vplot('liv,lm',minv(wp_g))
title('Inverse of Performance Weighting function')
xlabel('Frequency (rad/s)')

This sensitivity weight indicates that at low frequency, the closed-loop (both 
nominal and perturbed) should reject disturbances at the output by a factor of 
50-to–1. Expressed differently, steady-state tracking errors in both channels, 
due to reference step-inputs in either channel should be on the order of 0.02 or 
smaller. This performance requirement gets less and less stringent at higher 
and higher frequencies. The closed-loop system should perform better than 

10-1

100

101

102

100 101 102 103 104 105

Multiplicative Uncertainty Weighting Function

Frequency  (rad/s)

1
wp
----------

σ I GK+( ) 1– jω( )[ ] 1 wp⁄ jω( )<
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open-loop for frequencies up to 1.73 radians/second, and for higher frequencies, 
the closed-loop performance should degrade gracefully, always lying 
underneath the inverse of the weight, wp. The frequency response of  is 
shown in Figure 7-49.

Figure 7-49:  Inverse of the HIMAT Performance Weight

The 2 × 2 weighting matrices in the interconnection involve the scalar functions 
we have discussed, and identity matrices of dimension 2. We can build these 
matrices using the command daug, which stands for diagonal augmentation. 
Each new weight has two states, two inputs and two outputs as one can see 
using minfo.

wdel = daug(wdel,wdel);
wp = daug(wp,wp);
minfo(wdel)
minfo(wp)

The engineering motivation for a performance specification like this might 
come from the desire to have independent tracking of the angle of attack and 
pitch angle. This allows the vehicle to be pointed in pitch independently from 
vertical motions. We would expect this to be difficult to achieve, given that it is 
obviously easier for the vehicle to simultaneously pitch up and accelerate up 
than it is to simultaneously pitch down and accelerate up.

1
wp
-------

10-2

10-1
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101

10-3 10-2 10-1 100 101 102

Frequency  (rad/s)

Inverse of Performance Weighting function
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Robust Stability, Nominal Performance, Robust Performance
The phrases robust stability, nominal performance, and robust performance 
are used in this framework extensively. 

Nominal Performance. The closed-loop system achieves nominal performance if 
the performance objective is satisfied for the nominal plant model, Gnom. 

In this problem, that is equivalent to:

Nominal Performance ⇔ ||WP(I + GnomK)–1||∞ < 1

Robust Stability. The closed-loop system achieves robust stability if the closed 
loop system is internally stable for all of the possible plant models G ∈ . 

In this problem, that is equivalent to a simple norm test on a particular 
nominal closed-loop transfer function.

Robust Stability ⇔ ||WdelKGnom(I + KGnom)–1||∞ < 1

Robust Performance. The closed-loop system achieves robust performance if the 
closed-loop system is internally stable for all G ∈ , and in addition to that, the 
performance objective,

||WP(I + GK)–1||∞ < 1,

is satisfied for every G ∈ . The property of robust performance is equivalent 
to a structured singular value test (a generalization of the two H∞ norm tests 
in the previous conditions) on a particular, nominal closed- loop transfer 
function. This is discussed further in Chapter 4, “Modeling and Analysis of 
Uncertain Systems”.

Building the Open-Loop Interconnection
The command sysic is used to construct the open-loop interconnection. We will 
often refer to this open-loop system as the generalized plant. In this particular 
example, we store the system in the MATLAB variable himat_ic. The 
command sysic will build any specified interconnection of smaller subsystems, 
provided the correct information about the interconnection is in the MATLAB 
workspace.
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A six-input, six-output SYSTEM matrix, himat_ic, (also referred to as P)

has internal structure shown in Figure 7-50. The variables control, pertin, 
dist, and y are two element vectors.

Figure 7-50:  HIMAT Open-Loop Interconnection Structure

This can be produced with nine MATLAB commands, listed below. The first 
eight lines describe the various aspects of the interconnection, and may appear 
in any order. The last command, sysic, produces the final interconnection. The 
commands can be placed in an M-file, or executed at the command line.

systemnames = ' himat wp wdel ';
inputvar = '[ pertin{2} ; dist{2} ; control{2} ]';
outputvar = '[ wdel ; wp ; himat + dist ]';
input_to_himat = '[ control + pertin ]';
input_to_wdel = '[ control ]';
input_to_wp = '[ himat + dist ]';
sysoutname = 'himat_ic';
cleanupsysic = 'yes'; 
sysic;

� pertin�z

� dist�e

� control�y

himat ic
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Since the system himat_ic is still open-loop, its poles are simply the poles of 
the various components that make up the interconnection.

minfo(himat_ic)
spoles(himat_ic) 
spoles(himat)
spoles(wdel)
spoles(wp)

µ-synthesis and D – K Iteration
For notational purposes, let P(s) denote the transfer function of the six-input, 
six-output open-loop interconnection, himat_ic. Define a block structure ∆ as

The first block of this structured set corresponds to the full-block uncertainty 
∆G used in section to model the uncertainty in the airplane’s behavior. The 
second block, ∆2 is a fictitious uncertainty block, used to incorporate the H∞ 
performance objectives on the weighted output sensitivity transfer function 
into the µ-framework.

Using theorem 4.5 from the “Robust Performance” section in Chapter 4, a 
stabilizing controller K achieves closed-loop, robust performance if and only if 
for each frequency ω ∈ [0, ∞], the structured singular value

µ∆[FL(P,K)(jω)] < 1

Using the upper bound for µ, (recall that in this case, two full blocks, the upper 
bound is exactly equal to µ) we can attempt to minimize the peak closed-loop µ 
value by posing the optimization problem

∆:=
∆1 0

0 ∆2

 : ∆1 C2 2×∈ ,∆2 C2 2×∈

 
 
 
 
 

C4 4×⊂ .

min d s( )I2 0

0 I2

FL P K,( ) d 1– s( )I2 0

0 I2 ∞
K

stabilizing

min
d s( )

stable,min–phase
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Finding the value of this minimum and constructing controllers K that achieve 
levels of performance arbitrarily close to the optimal level is called µ-synthesis. 
A more detailed discussion of D – K iteration is given in Chapter 5.

Before plunging into the D – K iteration design procedure, we begin with a 
controller designed via basic MIMO loop shaping methods.

Loop Shaping Control Design
One approach to control design for the HIMAT model is to synthesize a loop 
shaping controller. We want the loop shape controller, Kloop, to make the 
open-loop gain act as an integrator at low frequency and at crossover. At high 
frequencies, we won't worry too much about the details of the roll-off, provided 
that it is at least first order. To achieve this, we'll roughly invert the plant G(s) 
(G has only 1 MIMO finite zero, at s ≈ −0.026; it also has zeros at s = ∞, so our 
inverse is only approximate) and augment the desired loop gain dynamics to 
the controller. The series of commands below constructs one such controller 
and plots the open-loop gain (broken at the input to the controller), as seen in 
Figure 7-51. The interested reader may want to explore various alternative 
schemes for constructing loop shape controllers discussed in Freudenberg and 
Looze (1988).

[a,b,c,d] = unpck(himat);
cn = c*a*a + 1000*c*a;
dn = c*a*b + 1000*c*b;
kloop = mscl(minv(pck(a,b,cn,dn)),-9000);
L = mmult(himat,kloop);
omega = logspace(-1,4,50);
Lg = frsp(L,omega);
vplot('liv,lm',vsvd(Lg))
title('Loop Gain Plot with Loop Shape Controller')
xlabel('Frequency (rad/s)')
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Figure 7-51:  Loop Gain of the Loop Shaping Controller

The open-loop gain plot satisfies both the low frequency performance objective 
and the high frequency robustness goals. We have only plotted the singular 
values of GKloop, but KloopG looks similar. Hence, you would expect the 
controller to satisfy the robust stability and nominal performance 
requirements.

The two 2 × 2 transfer functions associated with robust stability and nominal 
performance can be evaluated for the loop shaping controller. Simply close the 
open-loop interconnection P (himat_ic) with the loop shaping controller, Kloop 
(kloop) and evaluate the pertinent transfer functions using the command sel. 

10-3

10-2

10-1

100

101

102

10-1 100 101 102 103 104

Loop Gain Plot with Loop Shape Controller

Frequency  (rad/s)



7 Robust Control Examples

7-88

In using sel, the desired outputs (or rows) are specified first, followed by the 
desired inputs (or columns). The results are seen in Figure 7-52.

clp = starp(himat_ic,kloop,2,2);
spoles(clp)
rs_loop = sel(clp,1:2,1:2);
np_loop = sel(clp,3:4,3:4);
rs_loopg = frsp(rs_loop,omega);
np_loopg = frsp(np_loop,omega);
vplot('liv,m',vnorm(rs_loopg),vnorm(np_loopg))
tmp1 = 'ROBUST STABILITY (solid) and';
tmp2 = ' NOMINAL PERFORMANCE (dashed)';
title([tmp1 tmp2])
xlabel('Frequency(rad/s)')

Figure 7-52:  Robust Stability and Nominal Performance Plots for the Loop 
Shaping Controller
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The interpretation of the plots in Figure 7-52 is as follows:

• The controlled system (with loop shaping controller) achieves nominal 
performance. This conclusion follows from the singular value plot of the 
nominal weighted output sensitivity function, which has a peak value of 
0.50.

• The controlled system (with loop shaping controller) achieves robust 
stability. This conclusion stems from the singular value plot of the nominal 
weighted input complementary sensitivity function, which has a peak value 
of 0.50.

H∞ Design on the Open-Loop Interconnection
In this section, we carry out the first step of the D – K iteration, which is an H∞ 
(sub)optimal control, design for the open-loop interconnection, himat_ic. In 
terms of the iteration, this amounts to holding the d variable fixed (at 1), and 
minimizing the ||⋅ ||∞ norm of FL(P,K), over the controller variable K. Recall that 
FL(P,K) is the nominal closed loop transfer function from the perturbation 
inputs and disturbances (sysic variables pertin and dist) to the perturbation 
outputs and errors (z and e), shown in Figure 7-53.

Figure 7-53:  Closed-Loop Linear Fractional Transformation

The function hinfsyn designs a (sub)optimal H∞ control law based on the 
open-loop interconnection structure provided. Syntax, input and output 
arguments of hinfsyn are

[k,clp] = hinfsyn(p,nmeas,ncon,glow,ghigh,tol)
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The arguments are as follows.

Inputs

Outputs

In this example, the open-loop interconnection is himat_ic, with two 
measurements, two control inputs, and the bisection algorithm will search for 
the optimal achievable closed-loop norm, to an absolute tolerance of 0.06, 
between lower and upper limits of 0.8 and 6.0, respectively. Since we are 
planning on performing several iterations of the D – K iteration procedure, we 
label the resulting controller k1. The resulting closed loop system (4-input, 
4-output), from [pertin;dist] to [z;e] is labeled clp1.

[k1,clp1] = hinfsyn(himat_ic,2,2,0.8,6.0,.06);

The controller is stable, and its Bode plot is shown in Figure 7-54.

Properties of Controller

minfo(k1)
omega = logspace(-1,4,50);
spoles(k1)
k1_g = frsp(k1,omega);
vplot('bode',k1_g)
subplot(211), title('Frequency Response of k1')

open-loop interconnection (SYSTEM matrix) p 

number of measurements nmeas 

number of controls ncons 

lower bound for bisection glow 

upper bound for bisection ghigh 

absolute tolerance for bisection method tol 

controller (SYSTEM matrix) k 

closed-loop (SYSTEM matrix) clp 
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Figure 7-54:  Bode Plot of k1

Figure 7-55 shows the singular values of the closed-loop system clp1. Although 
clp1 is 4 × 4, at each frequency it only has rank equal to 2, hence only two 
singular values are nonzero.

Closed-Loop Properties

rifd(spoles(clp1))
clp1g = frsp(clp1,omega);
clp1gs = vsvd(clp1g);
vplot('liv,m',clp1gs)
title('Singular Value Plot of clp1')
xlabel('Frequency (rad/s)')
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Figure 7-55:  Singular Value Plot of the Closed-Loop System with k1

The two 2 × 2 transfer functions associated with robust stability and nominal 
performance may be evaluated separately, using the command sel. Recall that 
the robust stability test is performed on the upper 2 × 2 transfer function in 
clp1, and the nominal performance test is on the lower 2 × 2 transfer function 
in clp1. Since a frequency response of clp1 is already available, (in clp1g) we 
simply perform the sel on the frequency response, and plot the norms.

rob_stab = sel(clp1g,[1 2],[1 2]);
nom_perf = sel(clp1g,[3 4],[3 4]);
minfo(rob_stab)
minfo(nom_perf)
vplot('liv,m',vnorm(rob_stab),vnorm(nom_perf))
tmp1 = 'ROBUST STABILITY (solid) and';
tmp2 = ' NOMINAL PERFORMANCE (dashed)';
title([tmp1 tmp2])
xlabel('Frequency (rad/s)')
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Figure 7-56:  Robust Stability and Nominal Performance Plots Using 
Controller k1

The interpretation of the plots in Figure 7-56 is as follows:

• The controlled system achieves nominal performance. This conclusion 
follows from the singular value plot of the nominal weighted output 
sensitivity function, which has a peak value of 0.92.

• The controlled system achieves robust stability. This conclusion stems from 
the singular value plot of the nominal weighted input complementary 
sensitivity function, which has a peak value of 0.86.

Assessing Robust Performance with µ
The robust performance, HIMAT example properties of the two different 
closed-loop systems can be analyzed using µ-analysis. The closed-loop systems, 
clp1 associated with the H∞ controller, and clp, associated with the loop 
shaping controller, each have four inputs and four outputs. The first two 
inputs/outputs correspond to the two channels across which the perturbation 
∆G connects, while the third and fourth inputs/outputs correspond to the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10-1 100 101 102 103 104

ROBUST STABILITY (solid)  and  NOMINAL PERFORMANCE (dashed)

Frequency  (rad/s)

robust stability (solid line) nominal performance (dashed line)



7 Robust Control Examples

7-94

weighted output sensitivity transfer function. Therefore, for a frequency 
domain µ-analysis of robust performance properties, the block structure should 
consist of a 2 × 2 uncertainty block, and a 2 × 2 performance block.

Referring back to the “Robust Performance” section in Chapter 4, robust 
performance (with respect to the uncertainty and performance weighting 
functions specified above) is achieved if and only if for every frequency, µ∆(⋅) of 
the closed-loop frequency response is less than 1.

The syntax of a general µ calculation is:

[bnds,dvec,sens,pvec] = mu(matin,deltaset)

The µ-analysis program, mu, calculates upper and lower bounds for the 
structured singular value of the matrix matin, with respect to the block 
structure deltaset. The matrix matin can be a CONSTANT MATLAB matrix, 
or a VARYING matrix, such as a frequency response matrix of a closed-loop 
transfer function. In this example, the frequency response is clp1g and the 
block structure is two, 2 × 2 full blocks. mu returns the upper and lower bounds 
in 1× 2 VARYING matrix bnds1, the frequency-varying D-scaling matrices in 
dvec1, the frequency dependent perturbation associated with the lower bound 
in rp1, and the sensitivity of the upper bound to the D-scales in sens1.

The bounds can be calculated by specifying the block structure, and running mu.

µ Analysis of H∞ Design
The H∞ design is analyzed with respect to structured uncertainty using µ. 
First, the density of points in the frequency response is increased from 50 to 
100 to yield smoother plots. Then the upper and lower bounds for µ are 
calculated on the 4 × 4 closed-loop response of the matrix clp_g1. The upperand 
lower bounds for µ are plotted (in this example they lie on top of one another) 
along with the maximum singular value in Figure 7-57.

∆:=
∆1 0

0 ∆2

 : ∆1 C2 2×∈ ,∆2 C2 2×∈

 
 
 
 
 
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deltaset=[2 2; 2 2];
omega1 = logspace(-1,4,100);
clp_g1 = frsp(clp1,omega1);
[bnds1,dvec1,sens1,pvec1] = mu(clp_g1,deltaset);
vplot('liv,m',vnorm(clp_g1),bnds1)
title('Maximum Singular Value and mu Plot')
xlabel('Frequency (rad/s)')
text(.15,.84,'max singular value (solid)','sc')
text(.3,.4,'mu bounds (dashed)','sc')
text(.2,.15,'H-infinity Controller','sc')

Figure 7-57:  Maximum Singular Value of the 4 × 4 Closed-Loop Transfer 
Function FL(P,K1)(jω) and Robust Performance µ

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10-1 100 101 102 103 104

max singular value (solid)

mu bounds (dashed)

H-infinity Controller

Maximum Singular Value and mu Plot

Frequency  (rad/s)

FL(P,K1)(jω) (solid line) robust performance µ (dashed line) 



7 Robust Control Examples

7-96

Hence, the controlled system (from H∞) does not achieve robust performance. 
This conclusion follows from the µ plot in Figure 7-57, which peaks to a value 
of 1.69, at a frequency of 73.6 rad/sec. This means that there is a perturbation 
matrix ∆G, with ||∆G||∞ = , for which the perturbed weighted sensitivity gets 
large

||WP(I + Gnom(I + Wdel∆G)K–1||∞ = 1.69

This perturbation, ∆G, can be constructed using dypert. The input variables to 
the command dypert consist of two outputs from µ, the perturbation matrix 
and the bounds, along with the block structure, and the numbers of the blocks 
for which the rational matrix construction should be carried out. Often times, 
some of the blocks correspond to performance blocks and therefore need not be 
constructed. Here, only the first block is an actual perturbation, so the 
construction is only done for this 2 × 2 perturbation (fourth argument of 
dypert).

delta_G = dypert(pvec1,deltaset,bnds1,1);
minfo(delta_G) % 2 by 2
rifd(spoles(delta_G)) % stable
hinfnorm(delta_G) % 1/1.69
clp_pert = starp(delta_G,clp1,2,2); % close top loop with delta
minfo(clp_pert)
rifd(spoles(clp_pert)) % stable, since RS passed
hinfnorm(clp_pert) % degradation of performance

1
1.69
-----------

e

-

�

clp1

delta G

�

� d

e� clp pert � d
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µ-Analysis of Loop Shape Design
Robust performance for the system with the loop shape controller, Kloop, can 
also be analyzed using µ. You might think that the loop shaping controller 
would exhibit good robust performance properties, based on its excellent 
nominal performance and robust stability properties.

clpg = frsp(clp,omega1);
bnds_loop = mu(clpg,deltaset);
vplot('liv,m',bnds_loop)
title('mu Plot of Closed-loop System')
xlabel('Frequency (rad/s)')
text(.6,.85,'Loop Shape Controller','sc')

However, the closed-loop system with the loop shaping controller does not 
achieve robust performance. In fact, µ reaches a peak value of 11.7 at a 
frequency of 0.202 rad/sec, as seen in Figure 7-58. This means that there is a 
perturbation matrix ∆G, with ||∆G||∞ = , for which the perturbed weighted 
sensitivity gets large

||WP(I + Gnom(I + Wdel∆G)K–1||∞ = 11.7

Notice that this perturbation is 8.2 times smaller than the perturbation 
associated with the H∞ control design, but that the subsequent degradation in 
closed-loop performance is 8.2 times worse. Therefore, the loop shaping 
controller will most likely perform poorly on the real system.

1
11.7
-----------
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Figure 7-58:  Robust Performance µ Plot of the Closed-Loop HIMAT System 
with the Loop Shaping Controller

The structured singular value µ is large in the low frequency range due to the 
off-diagonal elements of clpg being large. One can see this using the command 
blknorm, which outputs the individual norms of the respective blocks. The 
coupling between the off-diagonal terms associated with 0.202 rads/sec point to 
the problem — the upper right entry is 0.14, somewhat small, but not small
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enough to counteract the large (nearly 1000) lower left entry. As expected, 
.

blkn_cl = blknorm(clpg,deltaset);
see(xtract(blkn_cl,.15,.3))

2 rows 2 columns

iv = 0.159986
4.9995e-01 1.4127e-01
5.6525e+02 1.6402e-01

iv = 0.202359
4.9991e-01 1.4193e-01
9.5950e+02 1.6520e-01

iv = 0.255955
4.9985e-01 1.4294e-01
7.5635e+02 1.6607e-01

Recapping Results
Let’s summarize what has been done so far:

• The generalized plant, himat_ic, which includes the aircraft model, 
uncertainty and performance weighting functions, and the interconnection 
of all of these components was built using sysic.

• A controller was designed using hinfsyn.

• The robust performance characteristics of the closed-loop system were 
analyzed with a structured singular value frequency domain test using mu.

The structured singular value analysis involved computing µ at each frequency 
of this 4 × 4 closed loop response, with respect to a block structure ∆ which is 
made up of two 2 × 2 full blocks. The blocks represent, respectively, uncertainty 
in the aircraft model, and the performance objectives.

At this stage, the controller which has been designed using H∞ techniques 
(nearly) minimizes the H∞ norm of the closed loop transfer function from the 
4 × 1 vector of perturbation inputs and disturbance inputs to the 4 × 1 vector of 
perturbation outputs and error signals. The structured singular value analysis 

µ 0.14*959 11.6=≈
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shows that the µ analysis improves on the  bound at most frequencies, but 
there is no improvement at the frequency of 73.6 rads/sec.

Hence, the peak value of the µ-plot is as high as the peak value on the singular 
value plot, the µ analysis seems to have been of little use. However, at most of 
the frequencies, µ is smaller than , and in the next iteration of synthesis, the 
controller can essentially focus its efforts at the problem frequency, and lower 
the peak of the µ-plot.

D – K Iteration for HIMAT Using dkit
The µ-Tools M-file dkit automates the µ-synthesis procedure via D – K 
iteration. This example is a modified version of the HIMAT problem considered 
earlier (see Figure 7-47) and is extended to include a frequency dependent 
sensor noise signal, as shown in the closed-loop interconnection diagram in 
Figure 7-59. This sensor noise signal is included to represent a more realistic 
performance objective.

Figure 7-59:  HIMAT Closed-Loop Interconnection Structure

Now, the open-loop interconnection structure is the eight input, six output 
linear system, shown below

with internal structure, as in Figure 7-60.

σ .( )
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The M-file mkhicn creates the plant model, weighting functions and the 
interconnection structure shown in Figure 7-60. This can be produced with 
nine MATLAB commands, listed below, and also in the M-file mkhicn (which 
creates the plant and weighting functions).

Figure 7-60:  HIMAT Open-Loop Interconnection Structure

mkhicn

file: mkhicn.m
mkhimat;
wdel = nd2sys([50 5000],[1 10000]);
wp = nd2sys([0.5 0.9],[1 0.018]);
poleloc = 320;
Wn = nd2sys([2 0.008*poleloc],[1 poleloc]);
wdel = daug(wdel,wdel);
wp = daug(wp,wp);
Wn = daug(wn,wn);

systemnames = ' himat wp wdel wn ';
inputvar = '[ pertin{2} ; dist{4} ; control{2} ]';
outputvar = '[ wdel ; wp ; himat + dist(1:2) + wn ]';
input_to_himat = '[ control + pertin ]';
input_to_wdel = '[ control ]';
input_to_wp = '[ himat + dist(1:2) ]';
input_to_wn = '[ dist(3:4) ]';
sysoutname = 'himat_ic';
cleanupsysic = 'yes';

sysic;

"
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e2

#

control
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dist(3:4)�wn�f� +
+

�y

f�
+
+

- - - f�
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6
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? ?

wdel
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The dkit file himat_dk has been set up with the necessary variables to design 
robust controllers for HIMAT using D – K iteration. A listing of the himat_dk 
file follows. You can copy this file into your directory from the µ-Tools 
subroutines directory, mutools/subs, and modify it for other problems, as 
appropriate.

% himat_dk
%
% This script file contains the USER DEFINED VARIABLES for the 
%mutools DKIT script file. The user MUST define the 5 
%variables below.
%------------------------------------------%

REQUIRED USER DEFINED VARIABLES
%------------------------------------------%
% Nominal plant interconnection structure
NOMINAL_DK = himat_ic;

% Number of measurements
NMEAS_DK = 2;

% Number of control inputs
NCONT_DK = 2;

% Block structure for mu calculation
BLK_DK = [2 2;4 2];

% Frequency response range
OMEGA_DK = logspace(-3,3,60);

%----------------------end of himat_dk-------------------------%
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After the himat_dk.m file has been set up, you need to let the dkit program 
know which setup file to use. This is done by setting the string variable 
DK_DEF_NAME in the MATLAB workspace equal to the setup filename. Typing 
dkit at the MATLAB prompt will then begin the D – K iteration procedure.

DK_DEF_NAME = 'himat_dk';
dkit
starting mu iteration #: 1

Iteration Number: 1
-------------------

Information about the Interconnection Structure IC_DK:
system10 states 6 outputs8 inputs
Test bounds: 0.0000 < gamma <= 100.0000

Gamma value achieved: 2.1516

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

100.000 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.0003 p

50.000 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.0011 p

25.000 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.0046 p

12.500 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.0183 p

6.250 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.0742 p

3.125 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.3117 p

1.562 2.3e-02 0.0e+00 1.7e-02 0.0e+00 1.5583# f

2.152 2.3e-02 0.0e+00 1.8e-02 0.0e+00 0.7100 p
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Singular value plot of closed-loop system in graphics window. Make 
sure that the chosen frequency range is appropriate.
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Next, we get to change the frequency range, if desired. For illustrative 
purposes, we will change the number of logarithmically spaced points from 60 
to 70.

Do you want to modify OMEGA_DK? (y/n): y

Current Frequency Variable
---------------------------------------------------------------
(s)Frequency Spacinglog
(n) # Frequency Points60
(b)Frequency - bottom1.00e-03
(h)Frequency - high1.00e+03

Enter (s n b and/or h) to change OMEGA, (e) to exit unchanged: n

------------CHANGING # of Points--------------

Enter desired # of points: 70

Current Frequency Variable
---------------------------------------------------------------
(s)Frequency Spacinglog
(n) # Frequency Points70
(b)Frequency - bottom1.00e-03
(h)Frequency - high1000

Enter (s n b and/or h) to change, (e) to exit: e

By typing e, we exit the frequency range modification, and the closed-loop 
singular value frequency response is recalculated and plotted. In this case, the 
plot looks exactly the same.
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Singular value plot of closed-loop system in graphics window.
Make sure that chosen Frequency range is appropriate.

Do you want to modify OMEGA_DK? (y/n): n

RERUN H_inf with DIFFERENT bounds/tolerances? (y/n): n

Calculating MU of closed-loop system: g_dk
points completed....
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.
18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.
36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53 .
54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.
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MU plot for control design:Press any key to continue

Iteration Summary
------------------------------------
Iteration #1
Controller Order10
Total D-Scale Order0
Gamma Achieved2.152
Peak mu-Value2.075

Another D-K itera;tion? (y/n): y

Proceeding with the D – K iteration, we must fit the D-scaling variable that was 
calculated in the µ upper-bound computation. This rational D-scaling will then 
be absorbed into the open-loop interconnection.
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A plot of the µ upper bound, the first frequency-dependent D-scaling data (this 
is the curve we want to fit), and the sensitivity of the µ upper bound. The 
sensitivity measure roughly shows (across frequency) the relative importance 
of the accuracy of the curve fit. It is used in the curve fit optimization to weight 
some frequency ranges differently than others.
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You are prompted to enter your choice of options for fitting the D-scaling data. 
Press return to see your options.

Enter Choice (return for list):
Choices:

• nd and nb allow you to move from one D-scale data to another. nd moves to 
the next scaling, whereas nb moves to the next scaling block. For scalar 
D-scalings, these are identical operations, but for problems with full 
D-scalings, (perturbations of the form δI) they are different. In the (1,2) 
subplot window, the title displays the D-scaling Block number, the row/
column of the scaling that is currently being fit, and the order of the current 
fit (with d for data, when no fit exists).

• The order of the current fit can be incremented or decremented (by 1) using 
i and d.

• apf automatically fits each D-scaling data. The default maximum state order 
of individual D-scaling is 5. The mx variable allows you to change the 
maximum D-scaling state order used in the automatic pre-fitting routine. mx 
must be a positive, nonzero integer. at allows you to define how close the 
rational, scaled µ upper bound is to approximate the actual µ upper bound in 
a norm sense. Setting at 1 would require an exact fit of the D-scale data, and 
is not allowed. Allowable values are greater than 1, and the meaning is 

nd Move to Next D-Scaling

nb Move to Next D-Block

i Increment Fit Order

d Decrement Fit Order

apf Auto-PreFit

mx 3 Change Max-Order to 3

at 1.01 Change Auto-PreFit Tol to 1.01

0 Fit with zeroth order

2 Fit with second order

n Fit with n'th order

e Exit with Current Fittings

s See Status
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explained in Chapter 5, “Control Design via m Synthesis”. This setting plays 
a role (mildly unpredictable, unfortunately) in determining where in the 
(D,K) space the D – K iteration converges.

• Entering a positive integer at the prompt will fit the current D-scale data 
with that state order rational transfer function.

• e exits the D-scale fitting to continue the D – K iteration.

• The variable s will display a status of the current and fits.

Select apf to automatically fit the D-scale data. After a few seconds of 
calculation, the first D-scale is fit with a fourth order rational curve as shown 
in the top-right plot, along with the frequency-dependent magnitude data that 
is being fit. Also shown in the top-left portion of the graphics window is a plot 
comparing the upper bound of µ (using the frequency dependent D-scalings) 
along with the maximum singular value of the closed-loop transfer function 
after being scaled by the just-computed rational fit. Note that the second 
D-scale data, which corresponds to the performance block, is fit with a 
constant. This is expected since one of the D-scalings can always be normalized 
to be 1. Enter s after the D-scale fitting is completed to see the status.

Enter Choice (return for list): apf
Starting Auto-PreFit...
Block 1 , Order = 0 1 2 3 4
Block 2 , Order = 0

Done

Enter Choice (return for list): s

Block 1: 4
Block 2: 0
Auto PreFit Fit Tolerance: 1.03
Auto PreFit Maximum Order: 5

Enter Choice (return for list): 
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In this case, the µ upper bound with the D-scale data is very close to the µ upper 
bound with the rational D-scale fit. The fourth order fit is quite adequate in 
scaling the closed-loop transfer function. The curve fitting procedure for this 
scaling variable is concluded by entering e at the Enter Choice prompt.

Enter Choice (return for list): e

In this problem, the block structure consists of two complex full blocks: the 2 × 
2 block associated with the multiplicative uncertainty model for the aircraft, 
and the 4 × 2 performance block. Since there are two blocks, there is only one 
D-scaling variable, and we are completely done with the curve fitting in this 
iteration.
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At the conclusion of the curve fitting procedure, a frequency response plot is 
shown, which compares the norm of the rationally scaled, closed-loop system to 
the lower and upper bound for µ.

Finally, before the next H∞ synthesis procedure, we get the option of changing 
the parameters used in the hinfsyn routine. This is useful to change the lower 
bound in the γ-iteration. In this example, we make no changes, and simply 
continue.
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Altering the HINFSYN settings for next synthesis...

HINFSYN Settings Previously  Next
------------------------------------------------------------
(u)GAMMA Upper Bound100 2.146
(l)GAMMA Lower Bound  0.00e+000.00e+00
(t)Bisection Tolerance1.0004.29e-02
(p)Riccati PSD epsilonl.00e-06l.00e-06
(j)Riccati j-w epsilonl.00e-08l.00e-08

Enter (u l t p j) to change, (e) to exit: e

The iteration proceeds by computing the H∞ optimal controller for the scaled 
(using the rational scalings from the curve fitting) open-loop system.

Iteration Number:  2
--------------------

Information about the Interconnection Structure IC_DK:
system:26 states6 outputs8 inputs
Test bounds: 0.0000 <  gamma  <= 2.1461

Gamma value achieved:1.0730

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

2.146 2.Oe–02 –5.2e–14 1.8e–02 –1.5e–16 0.1557 p

1.073 1.9e–02 –4.6e–14 1.7e–02 –3.4e–17 0.9958 p

0.537 1.4e–14# ******* 1.2e–02 –1.7e–18 ****** f

0.805 1.8e–02 –7.7e–13 1.6e–02 –5.8e–18 4.9336# f

1.019 1.9e–02 –6.Oe–14 1.7e–02 –2.4e–17 1.2077# f

1.055 1.9e–02 –2.3e–13 1.7e–02 –3.8e–17 1.0589# f
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Singular value plot of closed-loop system in graphics window.
Make sure that chosen Frequency range is appropriate.

Do you want to modify OMEGA_DK? (y/n): n

RERUN H_inf with DIFFERENT bounds/tolerances? (y/n): n

Calculating MU of closed-loop system: g_dk
points completed....
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.
18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.
36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.
54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.
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MU plot for control design:Press any key to continue

Iteration Summary
--------------------------------------------
Iteration #12
Controller Order1026
Total D-Scale Order016
Gamma Achieved2.1521.073
Peak mu-Value2.0751.073

Another D-K iteration? (y/n): y

The third iteration begins by fitting the new frequency-dependent D-scaling.
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Again, enter the automatic pre-fitting option apf.

Enter Choice (return for list): apf
Starting Auto-PreFit...
Block 1 , Order = 0 1 2 3 4 5
Block 2 , Order = 0
Done
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This fifth order fit works well in scaling the transfer function, so we exit the 
curve fitting routine.

Enter Choice (return for list):e
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Altering the HINFSYN settings for next synthesis...

HINFSYN Settings Previously Next
----------------------------------------------------------------
(u)GAMMA Upper Bound 2.146 1.095
(1)GAMMA Lower Bound  O.OOe+OO O.OOe+OO
(t)Bisection Tolerance 4.29e-02 2.19e-02
(p)Riccati PSD epsilon 1.OOe-06 1.OOe-06
(j)Riccati j-w epsilon 1.OOe-08 1.OOe-08

Enter (u l t p j) to change,  (e) to exit: e

Iteration Number:  3
--------------------

Information about the Interconnection Structure IC_DK:
system:30 states6 outputs8 inputs
Test bounds: 0.0000 <  gamma  <= 1.0947

Gamma value achieved:0.9704

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

1.095 2.1e-02 -1.2e-13  1.7e-02 -3.1e-18 0.5970 p

0.547 9.1e-13# *******  1.2e-02 -4.2e-17 ****** f

0.821 2.Oe-02 -1.2e-11  1.6e-02 -5.5e-16 45.1126# f

1.040 2.1e-02 -7.Oe-13  1.7e-02 -2.4e-16 0.7263 p

0.996 2.1e-02 -8.4e-13  1.6e-02 -2.9e-17 0.8741 p

0.961 2.1e-02 -1.8e-13  1.6e-02 -2.5e-17 1.0433# f

0.970 2.1e-02 -7.9e-13  1.6e-02 -2.2e-16 0.9922 p
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Singular Value plot of closed-loop system in GRAPHICS window. Make sure 
that chosen Frequency range is appropriate

Do you want to modify OMEGA_DK? (y/n): n

RERUN H_inf with DIFFERENT bounds/tolerances? (y/n): n

Calculating MU of closed-loop system: g_dk
points completed....
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.
18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.
36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.
54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.
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MU plot for control design:Press any key to continue

Iteration Summary
----------------------------------------------------------
Iteration #123
Controller Order102630
Total D-Scale Order01620
Gamma Achieved2.1521.0730.970
Peak mu-Value2.0751.0730.973

Another D-K itera;tion? (y/n): n
echo off
Next MU iteration number: 4

At this point, we have achieved the robust performance objective, and we end 
the D – K iteration. We have designed a 30 state controller using D – K 
iteration which achieves a µ value less than 1.

In this example, it is also possible to reduce the controller order to 12, using 
truncated balanced realizations, and still maintain closed-loop stability and 
robust performance.
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max(real(spoles(kd_k3)))

ans =
-1.6401e-02

[k_dk3bal,hsv] = sysbal(k_dk3);
[k_dk3red] = strunc(k_dk3bal,12);
clpred_12 = starp(himat_ic,k_dk3red);
max(real(spoles(clpred_12)))

ans =
-6.9102e-03

clpred_12g = frsp(clpred_12,OMEGA_DK);
[bnds] = mu(clpred_12g,[2 2;4 2],'c');
pkvnorm(sel(bnds,1,1))

ans =
9.9910e-01

H∞ Loop Shaping Design for HIMAT
Now consider H∞ loop shaping control design for the HIMAT example discussed 
in previous sections. Recall that the objective is to reject disturbances up to 
about 1 rad/sec in the presence of substantial plant uncertainty above 100 rad/
sec. A loop-shaping design that gives a bandwidth of approximately 10 rad/sec 
and robustness which should be satisfactory.

Design Precompensator
First form the HIMAT system and plot its maximum singular values across 
frequency (see Figure 7-61).

mkhimat
[type,p,m,n] = minfo(himat);
om = logspace(-2,4,100);
himatg = frsp(himat,om);
vplot('liv,lm',vsvd(himatg),1);
title('SINGULAR VALUES OF HIMAT')
ylabel('SINGULAR VALUES'); xlabel('FREQUENCY (RAD/SEC)');
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Figure 7-61:  Singular Values of HIMAT

The singular values of himat are plotted in Figure 7-61, and although the unity 
gain cross over frequency is approximately correct, the low frequency gain is 
too low. We therefore introduce a proportional plus integral (P+I) 
precompensator with transfer function (1 + s–1)I2×2 to boost the low frequency 
gain and give zero steady state errors. The singular values of himat and himat 
augmented with the P+I compensator are shown in Figure 7-62.

sysW1 = daug(nd2sys([1 1],[1 0]),nd2sys([1 1],[1 0]));
sysGW = mmult(himat,sysW1);
sysGWg = frsp(sysGW,om);
vplot('liv,lm',vsvd(himatg),'-.',vsvd(sysGWg),'-',1,'--')
title('SINGULAR VALUES OF HIMAT AND AUGMENTED HIMAT')
ylabel('SINGULAR VALUES');
xlabel('FREQUENCY (RAD/SEC)');
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Figure 7-62:  Singular Values of HIMAT (dashed-dotted) and Augmented Plant 
with the H∞ Loop Shaping Controller (solid)

H∞ Loop Shaping Feedback Compensator Design
The optimally robust controller can now be designed for the frequency shaped 
plant.

[sysK1,emax] = ncfsyn(sysGW,1);
disp(['emax = ' num2str(emax)]);
emax = 0.436

The value of emax = 0.436 is a very satisfactory stability margin. The 
closed-loop norm can be checked by forming the open-loop interconnection of 
Figure 7-63, denoted by p_ic, and checking the reciprocal of the H∞ gain. See 
the “Loop Shaping Using H• Synthesis” section in Chapter 3 for more details 
about this control design technique.
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Figure 7-63:  H∞ Loop Shaping Standard Block Diagram

systemnames = 'sysGw';
inputvar = '[ w12; w22; u2 ]';
outputvar = '[ u; w1+sysGw; w1+sysGw ]';
input_to_sysGw = '[ w2+u ]';
sysoutname = 'p_ic';
cleanupsysic = 'yes';
sysic;
ncf_cl = starp(p_ic,sysK1);
ncf_cl_nm = hinfnorm(ncf_cl);
1/ncf_cl_nm(1)
ans = 

4.3598e-01
The implemented controller involves the pre- and postweighting functions W1 
and W2, as shown in Figure 7-64.

Figure 7-64:  Actual Implemented H∞ Loop Shaping Controller
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In this example W2 = I2×2, therefore, the implemented loop shaping controller 
is:

sysKloop = mmult(sysW1,sysK1);

Assessing Robust Performance with µ
We can now assess this controller by testing the original specification by using 
a µ-test as in previous designs. First the interconnection structure needs to be 
formed.

wdel = nd2sys([50,5000],[1,10000]);
wp = nd2sys([0.5,1.5],[1,0.03]);
wdel = daug(wdel,wdel);
wp = daug(wp,wp); 
himatic
clear wp wdel

Now form the closed-loop and evaluate the robust performance µ with the H∞ 
loop shaping compensator implemented (see Figure 7-65).

clp1 = starp(himat_ic,sysKloop,2,2);
clp_g1 = frsp(clp1,om);
deltaset = [2 2; 2 2];
[bnds1,dvec1,sens1,pvec1] = mu(clp_g1,deltaset);
vplot('liv,m',bnds1);
title('ROBUST PERFORMANCE MU WITH LOOPSHAPE CONTROLLER')
ylabel('MU');
xlabel('FREQUENCY (RAD/SEC)');
disp(['mu value is ' num2str(pkvnorm(sel(bnds1,1,1)))])
mu value is 1.323
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Figure 7-65:  Robust Performance µ with sysK1

The plot of µ is shown in Figure 7-65 (solid line), the µ-value is close to that 
required, giving a satisfactory design without exploiting the details of the 
performance and uncertainty weights. This substantiates the claim that this 
design method can give a very robust initial design which does not require 
detailed trade-offs between weights to be studied.

Reduced Order Designs
The previously designed controller will typically have one less state than the 
precompensator plus the plant. It is therefore often desirable to reduce the 
number of states in the controller. There are systematic techniques for doing 
this based on model reduction in the ν gap metric, δν, which is roughly 
equivalent to model reduction of normalized coprime factors of the plant and 
controller.
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First reduce the weighted plant model order and measure the resulting gap.

[sysGW_cf,sigGW]=sncfbal(sysGW);
sigGW
sigGW =

8.9996e-01
7.1355e-01
3.3542e-01
7.9274e-02
8.5314e-04
2.1532e-04

sysGW_4 = cf2sys(hankmr(sysGW_cf,sigGW,4,'d'));
gapGW_4 = nugap(sysGW,sysGW_4)
gapGW_4 =

8.6871e-04

It is seen that a fourth order model is essentially indistinguishable from the 
full order model due to the small value of the ν gap. Now design the controller 
for this reduced order system.

[sysK1_3,emax_3] = ncfsyn(sysGW_4,1);
emax_3
emax_3 =

4.3597e-01
This three state controller can be reduced to two states using Hankel model 
reduction techniques (hankmr).

[sysK1_3_cf,sigK1_3] = sncfbal(sysK1_3);
sigK1_3
sigK1_3 =

3.1674e-01
2.7851e-01
6.9959e-02

sysK1_2 = cf2sys(hankmr(sysK1_3_cf,sigK1_3,2,'d'));
gapK_2=nugap(sysK1_3,sysK1_2)
gapK_2 =

6.9959e-02
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The robustness bound in the “Loop Shaping Using H• Synthesis” section in 
Chapter 3, equation 3-23, can now be applied to give a lower bound on 
robustness,

e_bound=sin(asin(emax_3)-asin(gapGW_4)-asin(gapK_2))
e_bound =

3.7114e-01

and this can be compared with the actual stability margin with the reduced 
order controller as follows.

cl_red = starp(p_ic,sysK1_2);
tmp = hinfnorm(cl_red);
e_act=1/tmp(1)
e_act =

4.0786e-01

It is seen that the actual robustness is about half way between the optimal and 
this lower bound. The important use of the bounds is that they indicate what 
level of reduction is guaranteed not to degrade robustness significantly.

This gives a third-order controller together with the second-order P+I term. 
The µ-value for this controller, not shown here, turns out to have essentially 
the same µ -value as the closed-loop system with the full order controller.

Introducing a Reference Signal
A reference signal can be introduced into the loop shaping control design as 
follows.

[sysK3,emax] = ncfsyn(sysGW,1.1,'ref');
cl_ref = starp(p_ic,sysK3,2,2);
minfo(cl_ref)
system: 12 states  4 outputs  6 inputs

When the ncfsyn option ref is specified, the controller includes an extra set of 
reference inputs. The second input argument to ncfsyn is 1.1. This implies we 
are designing a suboptimal controller with 10% less performance than at the 
optimal. In practice, a 10% suboptimal design often performs better in terms of 
robust performance than the optimal controller on the actual system.
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The last two inputs to cl_ref correspond to the reference signals, the first two 
outputs are the outputs of the controller and the last two outputs are the inputs 
to the controller (plant output plus observation noise). This design makes the 
closed-loop transfer function from reference to plant output the numerator of a 
normalized coprime factorization of sysGW. An external reference compensator 
could also be added to improve the command response and there are many 
possibilities. Here we first diagonalize the closed-loop reference to output 
transfer function and then insert some phase advance to increase the speed of 
response.

cl_ref_yr=sel(cl_ref,3:4,5:6);
P0 = transp(mmult([0 1; -1 0],cl_ref_yr,[0 1; -1 0]));
P1 = nd2sys([10 50],[1 50]);
P2 = daug(P1,P1);
sysQ = mmult(P0,P2);

Now reduce the order of sysQ to four states using the balanced realization 
technique (sysbal), and incorporate into the controller.

[sysQ_b,sig_Q] = sysbal(sysQ);
sig_Q
sig_Q =

3.9665e+00
2.9126e+00
7.2360e-01
4.5915e-01
2.3600e-02
1.0016e-02
1.2526e-06
5.2197e-07

sysQ4 = strunc(sysQ_b,4);
sysK_ref = mmult(sysK3,daug(eye(2),sysQ4));

Finally form the closed-loop and calculate the step response.

sys_cl_ref = starp(p_ic,sysK_ref,2,2);
y = trsp(sys_cl_ref,[0;0;0;0;1;0],0.5,.001);
vplot(sel(y,1,1),'-.',sel(y,2,1),'.',sel(y,3,1),'-',...

sel(y,4,1),'--')
title('CLOSED LOOP TIME RESPONSE WITH SYSK1')
xlabel('TIME (SECONDS)')
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The step responses are plotted in Figure 7-66. The first output (solid) tracks the 
command well with a rise time of less than 0.1 second and no overshoot. The 
output of the second channel (dashed) is zero, indicating that there is no cross 
coupling between the output channels in the nominal closed-loop system. The 
controller output commands (dotted and dashed-dotted lines) are also plotted. 
This is just the nominal step response and further tests are needed to check the 
sensitivity of the closed-loop to the plant uncertainty.

Figure 7-66:  Time Response of Closed Loop System: sysK1
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F–14 Lateral-Directional Control Design
Consider the design of a lateral-directional axis controller for the F–14 aircraft 
during powered-approach to landing. The linearized F–14 model is found at an 
angle-of-attack (α) of 10.5 degrees and airspeed of 140 knots. The control 
problem is posed as a robust performance, model matching problem with 
multiplicative plant uncertainty at the plant input and minimization of 
weighted output transfer functions as the performance criterion. A diagram for 
the closed-loop system, which includes the feedback structure of the plant and 
controller, and elements associated with the uncertainty models and 
performance objectives, is shown in Figure 7-67. 

Figure 7-67:  F-14 Control Block Diagram

The performance objective is to have the true airplane, represented by the 
dashed box in Figure 7-67, respond effectively to the pilot's lateral stick and 
rudder pedal inputs. These performance objectives include:
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• Decoupled response of the lateral stick, δlstk, to roll rate, p, and rudder 
pedals, δrudp, to side-slip angle, β. The lateral stick and rudder pedals have 
a maximum deflection of ± 1 inch. Therefore, they are represented as 
unweighted signals in Figure 7-67.

The aircraft handling quality (HQ) response from the lateral stick to roll rate 
should be a first order system, . The aircraft handling quality 
response from the rudder pedals to side-slip angle should be 

.

hqmod_p = nd2sys(5,[1 2]);
hqmod_beta = nd2sys(1.25^2,[1 2.5 1.25^2],-2.5);

The stabilizer actuators have ±20 degs and ±90 degs/sec deflection and 
deflection rate limits. The rudder actuators have ±30 degs and ±125 degs/sec 
deflection and deflection rate limits.

• The three measurement signals — roll rate, yaw rate, and lateral 
acceleration — are passed through second order, anti-aliasing filters prior to 
being fed to the controller.

• The natural frequency, ω, and damping, ζ, values for the yaw rate and lateral 
acceleration filters are 12.5Hz and 0.5, respectively, and 4.1 Hz and 0.7 for 
the roll rate filter. The anti-aliasing filters have unity gain at DC (see 
Figure 7-67). These signals are also corrupted by noise prior to entering the 
controller.

5 2
s 2+
------------

deg sec⁄
inch

----------------------

2.5– 1.25
2

s
2 2.5s 1.25

2
+ +

---------------------------------------------
deg sec⁄

inch
----------------------

Anti-aliasing filter ω2

s2 2ζω ω2
+ +

------------------------------------=
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freq = 12.5;
fr = freq*2*pi;
zeta = 0.5;
antiaf_yaw = nd2sys(fr^2,[1 2*zeta*fr fr^2]);
antiaf_lata = nd2sys(fr^2,[1 2*zeta*fr fr^2]);
freq = 4.1; fr = freq*2*pi;
zeta = 0.7;
antiaf_roll = nd2sys(fr^2,[1 2*zeta*fr fr^2]);
antia_filt = daug(antiaf_lata,antiaf_roll,antiaf_yaw);

The performance objectives are accounted for in this framework via 
minimizing weight transfer function norms. Weighting functions serve two 
purposes in the H∞ and µ framework: they allow the direct comparison of 
different performance objectives with the same norm and they allow 
frequency information to be incorporated into the analysis. The F–14 
performance weighting functions include:

Limits on the actuator deflection magnitude and rates are included via the 
W_act weight. Wact is a 4 × 4 constant, diagonal scaling matrix described by 

. These weights correspond to the stabilizer and 

rudder deflection rate and deflection limits.

Wact = daug(1/90,1/20,1/125,1/30);

• Wn is a 3 × 3 diagonal, frequency varying weight used to model the 
magnitude of the sensor noise , which 
corresponds to the noise levels in the roll rate, yaw rate and lateral 
acceleration channels.
W_n = daug(0.025,0.025,nd2sys([1 1],[1 100],0.0125);

• The desired δlstk-to-p and δrudp-to-β responses of the aircraft are formulated 
as a model matching problem in the µ-framework. The difference between 
the ideal response of the transfer functions, δlstk filtered through the roll rate 
HQ model and δrudp filtered through the side-slip angle HQ model, and the 
aircraft response, p and β, is used to generate an error that is to be 

Wact diag( 1
90
------

1
20
------

1
125
----------

1
30
------

, , ,=

Wn diag(0.025 0.025 0.0125 s 1+
s 100+
-------------------), ,=
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minimized. The Wp transfer function (see Figure 7-67) weights the difference 
between the idealized roll rate response and the actual aircraft response, p.

The magnitude of Wp emphasizes the frequency range between 0.06 and 30 
rad/sec. The desired performance frequency range is limited due to a 
right-half plane zero in the model at 0.002 rad/sec, therefore accurate 
tracking of sinusoids below 0.002 rad/sec isn’t required. Between 0.06 and 30 
rad/sec a roll rate tracking error of less than 5% is desired. The performance 
weight on the β tracking error, Wβ, is just 2 × Wp. This also corresponds to a 
5% tracking error objective.
W_p = nd2sys([.05 2.9 105.93 6.17 .16],...
 [1 9.2 30.8 18.83 3.95]);
W_beta = mscl(W_p,2);

All the weighted performance objectives are scaled to have an H∞ norm less 
than 1 when they are achieved. The performance of the closed-loop system is 
evaluated by calculating the maximum singular value of the weighted 
transfer functions from the disturbance and command inputs to the error 
outputs, as shown in Figure 7-68.

Figure 7-68:  F-14 Weighted Performance Objectives Transfer Matrix

Nominal Model and Uncertainty Models
The pilot has the ability to command the lateral-directional response of the 
aircraft with the lateral stick (δlstk) and rudder pedals (δrped). The aircraft has 
two control inputs: differential stabilizer deflection (δdstab, degrees) and rudder 
deflection (δrud, degrees); three measured outputs: roll rate (p, degs/sec), yaw 
rate (r, degs/sec) and lateral acceleration (yac, g’s) and a calculated output, 

Wp 0.5 * Wβ
0.05s4 2.90s3 105.93s2 6.17s 0.16+ + + +

s4 9.2s3 30.80s2 18.33s 3.95+ + + +
---------------------------------------------------------------------------------------------------------------= =
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side-slip angle (β). Note that β is not a measured variable but is used as a 
performance measure. The lateral-directional F–14 model, F14nom, has four 
states: lateral velocity (v), yaw rate (r), roll rate (p) and roll angle (φ). These 
variables are related by the state-space equations

v·

r·

p·

φ·

β
p
r

yac

A B
C D

v
r
p
φ

δdstab

δdrud

=

A

1.16e– 1– 2.27e– 2+ 4.30e 1+ 3.16e 1+

2.65e 3– 2.59e– 1– 1.45e– 1– 0.00e 0+

2.11e– 2– 6.70e 1– 1.36e– 0+ 0.00e 0+

0.00e 0+ 1.85e 1– 1.00e 0+ 0.00e 0+

,=

B

6.22e 02– 1.01e 1–

5.25e– 03– 1.12e– 2–

4.67e– 02– 3.64e 3–

0.00e 00+ 0.00e 0+

,=

C

2.47e 1– 0.00e 0+ 0.00e 0+ 0.00e 0+

0.00e 0+ 0.00e 0+ 5.73e 1+ 0.00e 0+

0.00e 0+ 5.73e 1+ 0.00e 0+ 0.00e 0+

2.83e– 3– 7.88e– 3– 5.11e 2– 0.00e 0+

,=

D

0.00e 00+ 0.00e 0+

0.00e 00+ 0.00e 0+

0.00e 00+ 0.00e 0+

2.89e 03– 2.27e 3–

,=
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Typing

load F14_nom

will load the nominal, F–14 plant model into the workspace. The dashed box in 
Figure 7-67 represents the true airplane, which corresponds to a set of F–14 
plant models defined by . Inside the box is the nominal model of the airplane 
dynamics, F14nom, models of the actuators, AS and AR, and two elements, Win 
and ∆G, which parameterize the uncertainty in the model. This type of 
uncertainty is called multiplicative plant input uncertainty. The transfer 
function Win is assumed known, and reflects the amount of uncertainty in the 
model. The transfer function ∆G is assumed to be stable and unknown, except 
for the norm condition, ||∆G||∞ ≤ 1. The aircraft uncertainty is modeled as a 
complex full-block, multiplicative uncertainty at the input of the rigid body 
aircraft nominal model. This is the same type of uncertainty description that 
was used in the previous section entitled “HIMAT Robust Performance Design 
Example”.

The stabilizer and rudder actuators, AS and AR, are modeled as first order 
transfer functions, . The actuator outputs are their respective rates and 
deflections.

A_S = pck(-25,25,[-25;1],[25;0]);
A_R = pck(-25,25,[-25;1],[25;0]);

Given the actuator and aircraft nominal models (denoted by Gnom(s)) we also 
specify a stable, 2 × 2 transfer function matrix Win(s), called the uncertainty 
weight. These transfer matrices parameterize an entire set of plants, , which 
must be suitably controlled by the robust controller K.

:= {Gnom(I + ∆GWin) : ∆G stable, ||∆G||∞ ≤ 1}.

All of the uncertainty in modeling the airplane is captured in the normalized, 
unknown transfer function ∆G. The unknown transfer function ∆G(s) is used to 
parameterize the potential differences between the nominal model, Gnom(s), 
and the actual behavior of the real airplane, denoted by .

In this example, the uncertainty weight Win is of the form

25
s 25+
---------------

Win s( ) := 
w1 s( ) 0

0 w2 s( )
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for particular scalar valued functions w1(s) and w2(s). The w1(s) weight 
associated with the differential stabilizer input is selected to be 

. The w2(s) weight associated with the differential rudder input 

is selected to be .

w_1 = nd2sys([1 4],[1 160],2);
w_2 = nd2sys([1 20],[1 200],1.5);
W_in = daug(w_1,w_2);

Hence the set of plants that are represented by this uncertainty weight

with ∆G(s) stable and ||∆G||∞ ≤ 1. Note that the weighting functions are used to 
normalize the size of the unknown perturbation ∆G. At any frequency ω, the 
value of |w1(jω)| and |w2(jω)| can be interpreted as the percentage of 
uncertainty in the model at that frequency. The dependence on frequency of the 
uncertainty weight indicates that the level of uncertainty in the airplane’s 
behavior depends on frequency. Frequency response plots of weights w1 and w2 
are shown in Figure 7-69.

om = logspace(-1,3,120);
W_ing=frsp(W_in,om);
vplot('liv,lm',sel(W_ing,1,1),'-',sel(W_ing,2,2),'--')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')

w1 s( ) 2 s 4+( )
s 160+
---------------------=

w1 s( ) 1.5 s 20+( )
s 200+

-----------------------------=

G := F14nom

25
s 25+
--------------- 0

0 25
s 25+
---------------

I2

2 s 4+( )
s 100+
--------------------- 0

0 1.5 s 20+( )
s 200+

-----------------------------

∆G s( )+
 
 
 
 

 
 
 
 
 
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Figure 7-69:  F-14 Uncertainty Weights w1, and w2
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The particular uncertainty weights chosen imply that in the differential 
stabilizer channel at low frequency, there is potentially a 5% modeling error, 
and at a frequency of 93 rad/sec, the uncertainty in channel 1 can be up to 
100%, and could get larger at higher frequencies. The rudder channel has more 
uncertainty at low frequency, up to 15% modeling error, and at a frequency of 
177 rad/sec, the uncertainty is at 100%. To illustrate the variety of plants 
represented by the set , type ex_f14tp at the command line to generate the 
step responses of different systems from  shown in Figure 7-70.

ex_f14tp

Figure 7-70:  Unit Step Responses of the Nominal Model (+) and 15 Perturbed 
Models from 

The M-file ex_f14tp generates the family of perturbed time responses shown 
in Figure 7-70.
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file: ex_f14tp.m
Gnom = mmult(F14_nom,daug(sel(A_S,2,1),sel(A_R,2,1)));
u = step_tr(0,1,.02,2);
ydstab = trsp(Gnom,abv(u,0),4,.05);
ydrud = trsp(Gnom,abv(0,u),4,.05);

for i=1:15
delta = randn(2,2);
delta = delta/norm(delta);
p = mmult(Gnom,madd(eye(2),mmult(W_in,delta)));
y1 = trsp(p,abv(u,0),4,.05);
y2 = trsp(p,abv(0,u),4,.05);
ydstab = sbs(ydstab,y1);
ydrud = sbs(ydrud,y2);

end
cold = ynum(ydrud);
index = 2:cold;
subplot(221)

vplot(sel(ydstab,2,1),'+',sel(ydstab,2,[index]))
title('Diff. Stabilizer to Roll Rate')
xlabel('Time (seconds)'), ylabel('p (degrees/sec)')

subplot(222)
vplot(sel(ydrud,1,1),'+',sel(ydrud,1,[index]))
title('Diff. Rudder to Beta')
xlabel('Time (seconds)'), ylabel('Beta (degrees)')

subplot(223)
vplot(sel(ydstab,4,1),'+',sel(ydstab,4,[index]))
title('Diff. Stabilizer to Lat. Acceleration')
xlabel('Time (seconds)'), ylabel('ac_y (g''s)')

subplot(224)
vplot(sel(ydrud,3,1),'+',sel(ydrud,3,[index]))
title('Diff. Rudder to Yaw Rate')
xlabel('Time (seconds)'), ylabel('r (degrees/sec)')

The control design objective is to design a stabilizing controller K such that, for 
all stable perturbations ∆G(s), with ||∆G||∞ ≤ 1, the perturbed closed-loop system 
remains stable, and the perturbed weighted performance transfer function has 
an H∞ norm less than 1 for all such perturbations. These mathematical 
objectives exactly fit in the structured singular value framework.
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Controller Design
The control design block diagram shown in Figure 7-67 is redrawn as F14IC 
shown in Figure 7-71. F14IC is the 25-state, six-input, six-output open-loop 
transfer matrix used for control design. The M-file ex_f14ic contains the sysic 
commands to generate the F14IC interconnection structure. The M-file 
ex_f14wt, called from ex_f14ic, creates the weighting functions (Wact, Win, Wn, 
Wp, and Wβ), the handling qualities models (hqmod_beta, hqmod_p), 
anti-aliasing filters (anti_filt), the actuator models (AS and AR) and loads the 
nominal F–14 plant model.

ex_f14ic

file: ex_f14ic.m
ex_f14wt
systemnames = 'W_in A_S A_R antia_filt hqmod_p hqmod_beta';
systemnames = [systemnames 'F14_nom W_act W_n W_P W_beta'];
inputvar = '[in_unc{2}; sn_nois{3}; roll_cmd; beta_cmd; ';
inputvar = [inputvar ' delta_dstab; delta_rud]' ];
outputvar = '[ W_in; W_P; W_beta; W_act; roll_cmd; ';
outputvar = [outputvar 'beta_cmd; antia_filt + W_n ]' ];
input_to_W_in = '[ delta_dstab; delta_rud ]';
input_to_A_S  = '[ delta_dstab + in_unc(1) ]';
input_to_A_R  = '[ delta_rud + in_unc(2) ]';
input_to_W_act = '[ A_S; A_R ]';
input_to_F14_nom = '[ A_S(1); A_R(1) ]';
input_to_antia_filt = '[ F14_nom(4) F14_nom(3) F14_nom(2)]';
input_to_hqmod_beta = '[ beta_cmd ]';
input_to_hqmod_p = '[ roll_cmd ]';
input_to_W_beta = '[ hqmod_beta - F14_nom(1) ]';
input_to_W_P  = '[ hqmod_p - F14_nom(3) ]';
input_to_W_n  = '[ sn_nois ]';
sysoutname = 'F14IC';
cleanupsysic = 'yes';
sysic
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The first step in the D – K iteration control design procedure is to design an H∞ 
(sub)optimal controller for the open-loop interconnection, F14IC. In terms of 
the D – K iteration, this amounts to holding the d variable fixed (at 1), and 
minimizing the ||⋅ ||∞ norm of FL(F14IC, K), over the controller variable K. The 
resulting controller is labeled K1.

The second step in D – K iteration involves solving a µ analysis corresponding 
to the closed-loop system, FL(F14IC, K1). This calculation produces a frequency 
dependent scaling variable dω, the (1,1) entry in the scaling matrix. In a 
general problem (with more than two blocks), there would be several d 
variables, and the overall matrix is referred to as the D-scales. The varying 
variables in the D-scales are fit (in magnitude) with proper, stable, minimum 
phase rational functions and absorbed into the generalized plant for additional 
iterations. These scalings are used to trick the H∞ minimization to concentrate 
more on minimizing µ rather than  across frequency. For the first iteration in 
this example, the d scale data is fit with a first order transfer function.

Figure 7-71:  F-14 Generalized Plant

The new generalized plant used in the second iteration has 29 states, 4 more 
states than the original 25-state generalized plant, F14IC. These extra states 
are due to the D-scale data being fit with a rational function, and absorbed into 
the generalized plant for the next iteration. Four D – K iterations are 
performed until µ reaches a value of 1.02. Information about the D – K 
iterations is shown in Table 7-1.

σ
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To replicate these results using D – K iteration, start up dkitgui and press the 
SETUP button in the main window. The data required in the DK Iteration 
Setup window should be filled in to duplicate the Setup window shown in 
Figure 7-72. The message “Mu-Synthesis Problem Specification 
Complete...” will appear in the message bar upon correctly entering the 
required data. Return to the main dkitgui window and press the Control 
Design button. This will synthesize controller K1. To run 4 automated D – K 
iterations, pull down the Iteration menu and select the number 4 from the 
Auto Iterate menu.

Table 7-1  F-14 D – K Iteration Information

Iteration Number 1 2 3 4

Total D-Scale Order 0 4 4 4

Controller Order 25 29 29 29

H∞ Norm Achieved 1.562 1.079 1.025 1.017

Peak µ Value 1.443 1.079 1.025 1.017
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Figure 7-72:  dkitgui F-14 D – K Iteration Setup Window

Analysis of the Controllers
The robust performance properties of the controllers can be analyzed using 
µ-analysis methods. Recall that robust performance is achieved if and only if 
for every frequency, µ∆(FL(F14IC,K)(jω)) is less than 1. Plots of robust 
performance µ of the closed-loop system with K1 and K4 implemented are 
shown in Figure 7-73. The M-file ex_f14mu generates Figure 7-73 given that 



7 Robust Control Examples

7-146

the original generalized plant, F14IC, and the controller SYSTEM matrices, K1 
and K4, are in your MATLAB workspace.

ex_f14mu

file: ex_f14mu.m 
om = logspace(-2,2,60);
clp1 = starp(F14IC,K1);
clp4 = starp(F14IC,K4);
clp1g = frsp(clp1,om);
clp4g = frsp(clp4,om);
deltaset = [2 2; 5 6];
mubnds1 = mu(clp1g,deltaset);
mubnds4 = mu(clp4g,deltaset);
vplot('liv,lm',mubnds1,'-',mubnds4,'--')
xlabel('Frequency (rad/sec)')

The controlled system with K1 implemented does not achieve robust 
performance. This conclusion follows from the µ plot, which peaks to a value of 
1.44, at a frequency of 7 rad/sec. Since µ is 1.44, there is a perturbation matrix 
∆G, such that ||∆G||∞ = , and the perturbed weighted performance transfer 
functions gets large. After four D – K iterations the peak robust performance µ 
value is reduced to 1.02 (Figure 7-73), thereby nearly achieving all of our robust 
performance objectives.

To illustrate the robustness of the closed-loop system in the time-domain, time 
responses of the ideal model, the nominal closed-loop system and the 
worst-case closed-loop system from  (using perturbations of size 1) are shown 
in Figure 7-74. Controller K4 is implemented in the closed-loop simulations. A 
1-inch lateral stick command is given at nine seconds, held at 1-inch till 12 
seconds, and then returns to zero. The rudder is commanded at one second with 
a positive 1-inch pedal deflection and held at 1-inch till four seconds. At four 
seconds a –1-inch pedal deflection is commanded and held to seven seconds and 
then returned to zero. One can see from the time responses that the closed-loop 
response is nearly identical for the nominal closed-loop system and the 
worst-case closed-loop system.

1
1.44
-----------
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Figure 7-73:  F-14 Robust Performance µ Plots with K1 and K4 Implemented
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Figure 7-74:  Time Response Plots of the F-14 Lateral-Directional Control 
System: Ideal, Nominal, and Perturbed
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The M-file ex_f14s1 contains the sysic commands to generate the F14IC 
simulation interconnection structure. ex_f14s2 contains the commands to 
calculate the worst-case perturbation of size 1 for K4, the closed-loop time 
response of the nominal and perturbed systems, and plots the results.

ex_f14s1
ex_f14s2

Figure 7-74 validates the frequency domain results showing that the controller 
synthesized via D – K iteration, K4, is insensitive to changes in the model. You 
will notice that the roll-rate response of the F–14 tracks the roll-rate command 
well initially and then departs from the command. This is due to a right-half 
plane zero in the aircraft model at 0.024 rad/sec.

file: ex_f14s1.m
systemnames = 'Win A_S A_R F14_nom antia_filt hqmod_p ';
systemnames = [systemnames ' hqmod_beta '];
inputvar = '[in_unc{2}; roll_cmd; beta_cmd; ';
inputvar = [inputvar ' delta_dstab; delta_rud]' ];
outputvar = '[ W_in; hqmod_p; F14_nom(2); hqmod_beta; '
outputvar = [outputvar ' F14_nom(1); roll_cmd; beta_cmd; '];
outputvar = [outputvar 'antia_filt ]' ];
input_to_W_in = '[ delta_dstab ; delta_rud ]';
input_to_A_S  = '[ delta_dstab + in_unc(1) ]';
input_to_A_R  = '[ delta_rud + in_unc(2) ]';
input_to_F14_nom = '[ AS(1); AR(1) ]';
input_to_antia_filt = '[F14_nom(4); F14_nom(3); F14_nom(2)]';
input_to_hqmod_beta = '[ beta_cmd ]';
input_to_hqmod_p = '[ roll_cmd ]';
sysoutname = 'F14SIM';
cleanupsysic = 'yes';
sysic
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file: ex_f14s2.m
om = logspace(-2,2,40);
delta = wcperf(frsp(clp4,om),deltaset,1,1);
sclp4_nom = starp(zeros(2,2),starp(F14SIM,K4));
sclp4_pert = starp(delta,starp(F14SIM,K4));
ustk = step_tr([0 1 4],[0 1 0],.02,10);
upedal = step_tr([0 1 4 7 ],[0 1 -1 0],.02,10);
input = abv(ustk,upedal);
y4nom = trsp(sclp4_nom,input,14,0.02);
y4pert = trsp(sclp4_pert,input,14,0.02);
subplot(211), vplot(sel(y4nom,3,1),'-',sel(y4nom,4,1),...

'-.',sel(y4pert,4,1),'--')
xlabel('Time (seconds)')
ylabel('Side-slip angle (degrees)')
title('beta: ideal (solid), actual (dashed-dot),... 
perturbed (dashed)')

subplot(212), vplot(sel(y4nom,1,1),'-',sel(y4nom,2,1),...
'-.',sel(y4pert,2,1),'--')

xlabel('Time (seconds)')
ylabel('Roll rate (degrees/sec)')
title('roll-rate: ideal (solid), actual (dashed-dot),...
perturbed (dashed)')
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A Process Control Example: Two Tank System
In this example we provide a relatively complete description of the entire 
modeling, identification, and design process. The experiment is a simple two 
tank system at Caltech. Other experimental work relating to this system is 
described by Smith et al. [SmDMS, SmD1, SmD2].

Experimental Description
The system consists of two water tanks in cascade and is shown schematically 
in Figure 7-75. The upper tank (tank 1) is fed by hot and cold water via 
computer controllable valves. The lower tank (tank 2) is fed by water from an 
exit at the bottom of tank 1. A constant level is maintained in tank 2 by means 
of an overflow. A cold water bias stream also feeds tank 2 and enables the tanks 
to have different steady-state temperatures.

Tank 1 is 5  inches in diameter and 30 inches in height. Tank 2 is 7  inches 
in diameter and the overflow maintains the water level at 7  inches. This 
configuration maintains the water level in tank 2 at 4  inches below the base 
of tank 1. Flow control is obtained via linear electropneumatic actuators with 
a CV of 1.0. One hundred inches of -inch piping runs from each valve to the 
top of tank 1. Approximately 36 inches of pipe connect the tanks, from the base 
of tank 1 to the base of tank 2. The tank 2 cold water bias stream is manually 
adjustable between 0.015 and 0.3 gpm. Thermocouples are mounted  inch 
above the base of each tank. A pressure sensor (0 to 5 psig) provides a 
measurement of the water level in tank 1.

All measured signals are filtered with fourth order Butterworth filters, each 
with a cutoff frequency of 2.25 Hz. Twelve bit resolution is used for the A/D and 
D/A conversions. In digital implementations of the controllers a sample period 
of 0.1 seconds has been used.
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Figure 7-75:  Schematic Diagram of the Two Tank System

An Idealized Nonlinear Model
The Two tank example, nonlinear model system is first considered without the 
actuators or sensors and an ideal nonlinear model is derived. Suitable units are 
added to give a basis for the subsequent discussion of the experimental data. 
The model of the actuators and sensors (including noise) is based on 
experimental data and is included later.
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We make the following unrealistic assumptions:

• There are no thermal losses in the system.

• Perfect mixing occurs in both tanks.

• The flow out of tank 1 is related only to the height of tank 1.

• There are no thermal or flow delays.

The system variables are given the following designations.

Tank 1 is considered first. Conservation of mass gives,

Variable Physical Quantity

ƒhc Command to hot flow actuator

ƒh Hot water flow into tank 1

ƒcc Command to cold flow actuator

ƒc Cold water flow into tank 1

ƒ1 Total flow out of tank 1

A1 Cross-sectional area of tank 1

h1 Tank 1 water level

t1 Temperature of tank 1

t2 Temperature of tank 2 

A2 Cross-sectional area of tank 2

h2 Tank 2 water level

ƒb Flow rate of tank 2 bias stream

tb Temperature of tank 2 bias stream

th Hot water supply temperature

tc Cold water supply temperature
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(7-2)

It is assumed that the flow out of tank 1 (ƒ1) is a memoryless function of the 
height (h1). As the exit from tank 1 is a pipe with a large length to diameter 
ratio, the flow is proportional to the pressure drop across the pipe and thus to 
the height in the tank. With a constant correction term for the flow behavior at 
low tank levels the height and flow can be reasonably approximated by an 
affine function,

(7-3)

Defining ƒ1 as a state variable leads to a linear state equation and an affine 
output equation for h1 (in the allowable range of ƒ1).

(7-4)

(7-5)

Conservation of energy leads to a model for the temperature of tank 1 (t1). It is 
useful to define a variable,

(7-6)

which can loosely be thought of as the energy in tank 1. Defining E1 as a state 
variable gives a nonlinear state equation and a nonlinear output equation for 
t1.

(7-7)

(7-8)

d
dt
----- A1h1( ) fh fc f1.–+=

h1 α= f1 β–   where  α β, 0>   and  f1 β α⁄≥ .

f
·
1

1–
A1α
-----------f1

1
A1α
-----------fh

1
A1α
-----------fc.+ +=

h1 αf1 β.–=

E1 h1t1,=

E·1
1–

A1α
----------- 1 β

h1
------+ 

  E1
th
A1
-------fh

tc
A1
-------fc.+ +=

t1
1
h1
------E1.=



A Process Control Example: Two Tank System

7-155

Note that for a fixed h1 the above equations are linear. This will aid in the 
identification.

In tank 2 the height (h2) is fixed and the input flow from tank 1 (ƒ1) is of 
temperature t1. This gives only one equation.

(7-9)

We will develop a model which has t1 and h1 as inputs and t2 as an output. This 
will allow us to concatenate the tank 1 and tank 2 models to give a model for 
the full system. A more physically motivated model might have t1 and ƒ1 as 
inputs. The linearizations will differ only by the factor α, so the difference is 
not significant.

We can rearrange equation 7-9 to give,

(7-10)

The output equation for tank 2 is trivial.

Equations 7-4, 7-5, 7-7, 7-8, and 7-10 provide a simple nonlinear model for the 
two tanks. To complete the description of the system a model must be obtained 
for the actuators and sensors. The uncertainty associated with elements of the 
model must also be identified. First, we define a suitable set of units for our 
model.

d
dt
----- A2h2t2( ) f1t1 fbtb f1 fb+( )t2.–+=

t·2
h1 β αfb+ +

αA2h2
-------------------------------

 
 
 

– t2
h1 β+

αA2h2
------------------ 

  t1

fbtb
A2h2
--------------+ +=
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Normalization Units
To quantify the model we define a system of normalized units as follows.

The first two definitions are sufficient to define all of the other units in the 
problem. The input flows range from 0 to 2.0 gallons/minute and it is 
convenient to define a flow unit at the input by 2.0 gpm = 1.0 funit. Using the 
above units the system dimensions are now,

The variable ƒs is a flow scaling factor which converts the input (0 to 1 funits) 
to flow in hunits3/second. This is used in the tankdemo script.

Physical 
Variable

Unit 
Name

0 Unit 
Definition

1 Unit 
Definition 

temperature tunit tc = 1.0 tunit th = 0.0 tunit

height hunit tank 1 empty tank 1 full 

flow funit zero input flow maximum (2.0 gpm) 
input flow

Variable Value Units 

A1 0.0256 hunits2

A2 0.0477 hunits2

h2 0.241 hunits

ƒb 7.4 × 10–5 hunits3/sec

tb 0.0 tunits

ƒs 0.00028 hunits3/sec/funit
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Operating Range
The physical system imposes constraints on the operating region. The most 
obvious of these is that as the bias stream is cold, the temperature of tank 2 (t2) 
must be less than that of tank 1 (t1). Saturation in the actuators prevents tank 
1 from being completely full of either hot or cold water. The relationship 
between ƒ1 and h1 can only be modeled by equation 7-3 for h1 in the range:

The numerical model given below applies only to this range.

In the linear design example the operating range of tank 1 is further reduced 
to:

Both sets of constraints severely limit the operating regions.

Actuator Model
There are significant dynamics and saturations associated with the actuators 
and a model of these is included. In the frequency range of interest the 
actuators can be modeled as a single pole system with rate and magnitude 
saturations. The rate saturation has been estimated from observing the effect 
of triangle waves of different frequencies and magnitudes. The following model 
will be used for the actuators.

(7-11)

with a magnitude limit of 1.0 funits and a rate limit of 3.5 funits/sec. It is the 
rate limit, rather than the pole location, that limits the actuator performance 
for most signals. For a linear model some of the effects of rate limiting can be 
included in a perturbation model.

0.15    h1    0.75.≤ ≤

0.25    h1    0.75.≤ ≤

0.25    t1    0.75.≤ ≤

fh
1

1 0.05s+( )
----------------------------- fhc=
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Experimental Assessment of the Model
Where possible, the system has been broken into subsystems, which can be 
identified independently. For example, the actuators are considered 
independently and tank 1 is identified separately from tank 2. This approach 
is not necessarily general.

Open-Loop Experiments
Static measurements of h1 and ƒ1 can be used to obtain estimates of α and β 
from the theoretical relationship: h1 = αƒ1 – β. Note that α appears as a gain in 
the nominal model and can also be easily estimated by dynamic measurements. 
Using such experiments gives the estimates, α = 4876 and β = 0.59.

Open loop experiments have been conducted to test the applicability of the 
model and obtain some feel for the level of uncertainty that will be appropriate. 
Band limited white noise, in several frequency bands, was used for the input 
signals. Data records were 8192 samples in length with sample rates of 1.0 Hz 
and 10.0 Hz. The transfer function estimates, presented below, have been 
obtained by the Welch method, using Hanning windows on sections of the data. 
The data plotted in the figures comes from several window lengths, typically 
1024 and 4096. Only the points with good coherency are plotted.

Equation 7-76 shows the estimated transfer function between ƒhc + ƒcc and h1, 
and the transfer function predicted from the model (equations 7-4 and 7-5), 
including the nominal actuator and Butterworth filter. The experimental data 
comes from five experiments at three different levels. For frequencies greater 
than 0.2 Hz, the plotted data comes from an experiment at h1 = 0.47.

Note that the theoretical model is a very close match to the experimental data 
over a wide range of frequencies. This suggests that a small perturbation 
weight is suitable for modeling the discrepancies between the nominal model 
and physical system behavior. Note also that the h1 model is independent of 
both h1 and t1. In other words it applies to the entire range of operating points.

For h1 fixed, the E1 state variable equation 7-7 and the t1 output equation 7-8 
are linear. Experiments have been performed at h1 = 0.15, 0.25, 0.47, and 0.75. 
The input waveforms were generated such that ƒhc = –ƒcc which maintains a 
constant h1. Figure 7-77 shows the transfer function between ƒhc – ƒcc(= 2ƒhc) 
and t1 calculated from the experimental data and estimated from the model 
(equations 7-7 and 7-8. For the data shown h1 = 0.15 and h1 = 0.75. The other 
cases lie between the two curves shown.
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Figure 7-76:  Transfer Function Between ƒhc + ƒcc and h1. Experimental Data 
and Theoretical Model
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Figure 7-77:  Transfer Function Between ƒhc – ƒcc and t1. Experimental Data 
and Models. h1 = 0.15 and h1 = 0.75.
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The nominal model/physical system discrepancies are far more significant for 
the t1 case. A larger t1 perturbation weight is required to cover these 
discrepancies. A more complete discussion on this issue is given in the 
“Perturbation Model” section. 

Similar analyses have been performed on tank 2. The open loop data is less 
conclusive due to observing the system through tank 1 and a higher noise level. 
The available data does confirm the theoretical model but to a lower frequency 
than that for tank 1. More definitive results have been obtained for tank 2 with 
the closed-loop experiments.

Closed-Loop Experiments
We will look at a closed-loop method of estimating a suitable uncertainty level 
for the model. This involves using a relay to induce limit cycling and is based 
on an auto-tuning method proposed by Åström and Hägglund [AstH]. More 
detail on using such approaches for estimating uncertainty levels is described 
by Smith and Doyle [SmD2]. 

Applying a relay in a feedback loop may drive the closed-loop system into stable 
limit cycles. This technique works for a large class of systems including the two 
tank system. In the experiments performed here a decoupled controller (into 
height and temperature loops) was used with a relay in the temperature 
control loop. This allowed stable control of the tank height (h1) and produced 
limit cycles in t1. These experiments were performed at fixed heights (h1 = 0.15, 
0.25, 0.47, and 0.75).

With a simple relay the closed-loop system will limit cycle at the frequency 
where the response has a phase of 180 degrees. The gain at this frequency can 
also be estimated from the input/output data. This experiment will identify the 
system at a single point. Using this information, a new controller is designed 
to introduce some lead into the closed-loop system. This new closed-loop system 
has limit cycles at a higher frequency giving an additional point at which the 
plant can be identified. In practice this technique can be repeated until the 
nonlinear and/or inconsistent effects dominate and the closed-loop system no 
longer limit cycles consistently. This also provides information on the 
frequency at which uncertainty should dominate in the model.

Details of the application of this approach to tank 1 are given in [SmD2]. To 
illustrate the concept, the configuration used to induce limit cycles in t1 is 
shown in Figure 7-78.
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Figure 7-78:  Closed-Loop Configuration for Relay Limit Cycle Experiments 
of t1. 

A series of controllers, Ci in Figure 7-78, was applied. These were used to 
introduce differing amounts of lead into the closed-loop system, giving differing 
limit cycle frequencies and amplitudes. A typical time response for such an 
experiment is shown in Figure 7-79. In this manner limit cycles were induced 
in the t1 loop. The highest frequency at which a limit cycle could be induced was 
0.023 Hz. We will subsequently see that this can be used as a heuristic for 
determining an appropriate perturbation weight for t1.

The tank 2 model was similarly studied. Figure 7-80 presents the limit cycle 
data obtained for tank 2. The E1 to t2 theoretical transfer function (for fixed h1) 
is shown for h1 = 0.15, 0.25, 0.47, and 0.75. Also shown are the points identified 
from each experiment. It was not possible to induce consistent limit cycles at 
frequencies above 0.03 Hz, indicating that this is a frequency at which the 
uncertainty should dominate in the model.

Height, h, is controlled by the proportional controller, Kh. R denotes the relay and 
Ci denotes one of a series of lead controllers used to adjust the limit cycle frequency.
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Figure 7-79:  Closed-Loop Relay Limit Cycle Experiment Controller: C1
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Figure 7-80:  Limit Cycle Identification Experiments for Tank 2. Tank 1 Height 
Held Fixed at h1 = 0.15, 0.25, 0.47, and 0.75

10-4

10-3

10-2

10-1

100

101

10-4 10-3 10-2 10-1 100 101

o
x x

+
*

+
+

+

*+*
+

10-4

10-3

10-2

10-1

100

101

10-4 10-3 10-2 10-1 100 101

frequency: Hz

m
ag

ni
tu

de

h1 = 0.15

h1 = 0.75

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

10-4 10-3 10-2 10-1 100 101

o
x x+

*+ ++

*
+
*

+

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

10-4 10-3 10-2 10-1 100 101

frequency: Hz

m
ag

ni
tu

de



A Process Control Example: Two Tank System

7-165

Developing the Interconnection Model for Design
The problem considered is the control of t1 and t2 for command response. The 
desired closed-loop configuration is illustrated in Figure 7-81. The controller 
has access to both the reference inputs and the temperature measurements. It 
would be possible (although more restrictive) to design a controller which used 
only the error between the temperature measurements and the setpoints.

Figure 7-81:  Closed-Loop Design Problem 

The layout of the interconnection structure is illustrated in Figure 7-82. The 
subsequent sections will develop a perturbed model and the necessary design 
weights for the design problem.

The t1 and t2 reference signals are denoted by t1cmd and t2cmd, respectively. 
Noise is assumed to enter within the tank system block. 



7 Robust Control Examples

7-166

Figure 7-82:  Interconnection Structure for the Design Problem

Linearized Nominal Model
The top tank model, given in equations 7-4, 7-5, 7-7, and 7-8, can be linearized 
to give the following model.

(7-12)
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(7-13)

The steady state values of h1 and t1 are given by  and , respectively.

A linearized model for tank 2 is given by,

(7-14)

As above,  denotes the steady state value of t2, and can be calculated by,

where the steady state flow out of tank 1 is,

To complete the linearized nominal model we must select a nominal operating 
point. The demo script, tankdemo, develops the equations in the form given 
above and uses the values  and  for the actual design.

Perturbation Model
We must now select a perturbation model structure for our robust control 
model. This involves determining the manner in which the perturbations enter 
the model, and selecting appropriate frequency dependent weights to 
normalize the perturbations. The guiding approach is to make the model 
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perturbations match our estimate of uncertainty in the physical system as 
closely as possible.

For example, it is reasonable to attribute some dynamic uncertainty to the 
actuators, which suggests that uncertainty at the inputs, ƒh and ƒc, is 
appropriate. It is also reasonable to consider this uncertainty as being relative 
with respect to the input. A potential model may have uncertainty modeled by 
multiplicative perturbations on ƒh and ƒc. This is particularly appropriate for 
high condition number plants as it prevents the controller from inverting the 
plant from the input in a robust design.

We already know from the open-loop experiments that there is a significant 
amount of dynamic uncertainty in the t1 response. This is due primarily to 
mixing and heat loss. This suggests that a multiplicative perturbation on the 
t1 output is also an appropriate model.

There are many choices available and we have chosen to capture the 
uncertainty with multiplicative perturbations on h1, t1, and t2. One could also 
add perturbations on ƒh and ƒc, although it is doubtful that the additional 
model complexity (it would now have five perturbations), would be worthwhile. 
Arguably, we do not have such a detailed model of the uncertainty in this case.

Figure 7-83 illustrates the perturbed linear model of the two tank system. The 
three perturbations, ∆1, ∆2, and ∆3, model the uncertainty in h1, t1, and t2, 
respectively. Note that they are multiplicative perturbations and that t2 is 
influenced by all three perturbations. The nominal tank 1 model is described 
by equations 7-12 and 7-13, and the nominal tank 2 model is given by equation 
7-14.

Figure 7-83:  Schematic Representation of the Perturbed, Linear, Two Tank 
Model
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To complete this model we must specify the perturbation weights, Wh1, Wt1, 
and Wt2. As we might expect, it is not possible to precisely determine the 
amount of uncertainty in the system. At best, we look for a rough frequency 
dependent bound. We discuss some of the ad-hoc means for getting suitable 
weights below:

• Accuracy limits on actuators and sensors. Equipment manufacturers will 
often specify accuracy limits on such equipment and this serves as a useful 
starting point for at least the steady-state uncertainty of some system 
components.

Known rate limits can also be viewed as limiting the high frequency behavior 
of an actuator. Rate limits are nonlinear and it will not be possible to 
completely capture their effects with even a linear perturbation model. 
However, these limits may give an approximate estimate of the bandwidth 
of an actuator.

• Linearization constants. If a nonlinear model is available, then examining 
the variation in the linearization constants across the expected range of 
operation will give an estimate of appropriate levels of uncertainty for 
elements of the model. For example, we could examine how the time constant 
of the tank 1 t1 response varied across the h1 operating range. 

Again, this is only a crude approximation. The full nonlinear behavior of the 
plant is not captured by considering a series of frozen linear systems at 
various operating points.

• Open-loop identification experiments. Comparing experimentally estimated 
transfer functions to those predicted by a nominal model gives a good 
estimate of the model/system discrepancy at each frequency. 

• Closed-loop identification experiments. These are preferred over open-loop 
identification experiments for a number of reasons:

Closing the loop automatically biases the plant to the correct operating point. 
This provides appropriate signals for identification as they are close to those 
signals that will occur in final closed-loop operation;

The achievable performance (at least in terms of closed-loop bandwidth) is 
limited by the uncertainty at frequencies close to the loop cross-over 
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frequency. Open-loop experiments tend to emphasize the frequencies where 
the plant gain is high – typically steady-state in many process control 
systems. This is simply due to the significantly larger response on the plant 
at those frequencies. On the other hand, using closed-loop identification 
experiments places the emphasis on the loop cross-over frequencies, which is 
more important for the ultimate closed-loop design.

The analysis of closed-loop identification experiments needs to be performed 
carefully. The measurement noise is no longer uncorrelated with the input 
and output signals and its effect cannot be removed simply by averaging. 
Van den Hof et al. [VdHSB] give a suitable means of dealing with this 
situation.

• Closed-loop relay experiments. The “Closed-Loop Experiments” section 
briefly discussed using relays to induce closed-loop limit cycle operation. A 
large class of systems (including the two tank system) will limit cycle under 
these circumstances. The frequency at which the system limit cycles is 
simply the loop cross-over frequency and we can investigate the achievable 
closed-loop bandwidth by using lead controllers to make the system limit 
cycle at successively higher frequencies.

Beyond some frequency the system no longer has a limit cycle; the dynamics 
are no longer dominated by linear time-invariant behavior. The heuristic is 
that at such frequencies the effect of the perturbations should dominate the 
model. This is easy to apply when a multiplicative perturbation is used; 
when the magnitude of the weight is greater than one, the perturbation 
dominates the model. 

This approach was used for determining the frequencies at which |Wt1| and 
|Wt2| exceeded one.

• Systematic design, implementation, and evaluation. In other words, try it 
and see. Clearly, closed-loop implementation of the controller design should 
be the final arbiter of a suitable model. One approach is to design a series of 
controllers, each with a smaller perturbation weight (i.e., assuming less 
uncertainty), and implement these controllers on the physical system. 
Setting the weight too high will give a conservative result as performance is 
unnecessarily traded off against robust stability. A weight that is too small 
will lead to a controller design that exhibits too little robustness, or is even 
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unstable, in practice. Balas and Doyle [BalDoy1, BalDoy2] give details of a 
similar approach to a flexible structure problem.

At first it seems that this approach does not save any effort as we must 
design and implement all potential controllers. However, it does provide 
information about the appropriate level of uncertainty, and we may be able 
to conduct simpler experiments (for example designing SISO controllers to 
evaluate Wh1) to gain information about components within the system. This 
involves less effort than attempting to tune all perturbation weights at once.

These issues have been considered in developing the perturbation weights. The 
most important aspects of the two tank problem were considered to be:

• The nominal model for h1 is very accurate up to at least 0.3 Hz. 

• Limit cycle experiments in the t1 loop suggest that uncertainty should 
dominate above 0.02 Hz. 

• There is about 180 degrees of additional phase lag in the t1 model 
(at h1 = 0.75) at about 0.02 Hz. There is also a significant gain loss at this 
frequency. These effects are the result of the unmodeled mixing dynamics. 

• Limit cycle experiments in the t2 loop suggest that uncertainty should 
dominate above 0.03 Hz.

It is not surprising that there is less uncertainty associated with tank 2; most 
of the temperature uncertainty arises from the mixing dynamics and tank 2 is 
somewhat smaller than tank 1. The perturbation weights are illustrated 
graphically in Figure 7-84.
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Figure 7-84:  Perturbation Weights for the Robust Control Design Problem
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Sensor Noise Weights
The sensor dynamics are insignificant relative to the dynamics of the rest of the 
system. This will not be true of the sensor noise. The potential sources of noise 
include electronic noise in thermocouple compensators, amplifiers, and filters, 
radiated noise from the stirrers, and poor grounding (this is, after all, an 
inexpensive laboratory experiment).

We will model the noise by adding a weighted unknown input to h1, t1, and t2. 
Smoothed FFT analysis has been used to estimate the noise on a quiescent 
system. This gives the following weights.

Wh1noise = 0.01

Wt1noise = 0.03

Wt2noise = 0.03

The design considered in tankdemo.m uses measurements of only t1 and t2. The 
weight Wh1noise is unnecessary for this case but is included so that you can 
investigate different control configurations.

There are additional disturbances or noises associated with the measurements 
that are not, strictly speaking, sensor noise. For example, in tank 2 the 
imperfect mixing of the bias stream causes variations in the temperature 
measurement. The inclusion of such noises here does not affect the 
performance requirements of the controller.

Specifying the Design Requirements
It now remains to include in the interconnection structure (refer to Figure 7-82) 
the weighting functions that specify performance. These are the reference 
weights, error weights, and actuator weights. Arguably, noise weights and 
disturbance weights also fall into those categories although we have chosen to 
present the noise weights as part of the system model above. In a more general 
setting weighted disturbances or more complex error specifications might also 
be considered. 

The weights should be considered as frequency dependent, relative weightings. 
For example, it is the relative size of the reference weights and noise weights 
that determines the extent to which the final controller design emphasizes 
reference tracking error over sensor noise rejection.
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The error weights are first order low pass filters, with Wt1perƒ weighting the t1 
tracking error and Wt2perƒ weighting the t2 tracking error. These are given by,

We have selected a higher weight (better tracking performance) for t1 because 
physical considerations lead us to believe that t1 will be easier to control than 
t2.

The majority of the water flowing into tank 2 comes from tank 1, which means 
that changes in t2 are dominated by changes in t1. It makes more sense to 
express the reference weighting in terms of t1 and t2– t1. This allows us to 
express the fact that t2 is normally commanded to a value close to t1. This is 
done by using the following weighting approach.

In this case,

Figure 7-85 graphically illustrates the error and command weighting 
functions.

Wt1perf
100

400s 1+
----------------------=

Wt2perf
50

800s 1+
----------------------.=

t1cmd

t2cmd

1 0
1 1

Wt1cmd 0

0 Wtdiffcmd

w1

w2

.=

Wt1cmd 0.1=

Wtdiffcmd 0.01=



A Process Control Example: Two Tank System

7-175

Figure 7-85:  Performance Weights for the Robust Control Design Problem

In the case of the actuation weights we would like to weight both the amplitude 
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function that rolls up at high frequencies. An alternative approach can be used 
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Using ƒhc as an example; the approach is to create an actuator model with ƒh 
and dƒh/dt as outputs. These can then be separately weighted with constant 
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Figure 7-86 illustrates the form of such a weighted actuator model.
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Figure 7-86:  Model of the Flow Valve Actuator Including Magnitude and Rate 
Weightings

The actuator bandwidth, denoted by BW in Figure 7-86, is,

BW = 20 radians/sec.

The weights selected for the tankdemo.m design were,

Note that each weighted actuator model contributes only one state to the 
interconnection structure, and allows independent weighting of ƒh and  (and 
ƒc and ).

Controller Design and Analysis
The tankdemo.m script runs through the design for the problem outlined above. 
The script file is not discussed in detail as it roughly follows the layout of the 
above material.

Whact 0.01=

Wcact 0.01=

Whrate 50=

Wcrate 50=

f·h
f·c
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Design Issues
One issue regarding the design approach is worth noting. We begin by 
designing for the nominal case. This is done by selecting out of the 
interconnection structure the perturbation inputs and outputs (v and z). This 
design achieved a closed-loop H∞ norm of γ = 0.9082. This is a lower bound on 
the achievable value of µ for robust performance.

The response of the nominal controller (k0 in the script) is simulated, and is 
shown in Figure 7-87. This is a check on the applicability of our performance 
weights. In general, the inclusion of the robustness in the design problem will 
have the effect of trading off this nominal performance in order to improve the 
stability robustness. Simulating the nominal design gives a rough idea of what 
the time domain performance implied by the weights.
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Figure 7-87:  Time Response for the Nominal H• Controller 
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The demo file, tankdemo, uses this interconnection structure for the robust 
performance design. In the demo example three D – K iterations are performed. 
In each of the D-scale fitting calls (performed with the function musynfit), 
second order D-scale fits were selected. The final value of µ achieved is 1.73. 
Further iterations may give further improvements; for this example it was 
decided to stop at this point.

Closed-Loop Analysis
We will run through a typical series of analyses for our design and briefly 
discuss the aspects of interest. The procedure guarantees closed-loop stability 
(although it is still worth checking to make sure numerical problems have not 
invalidated the design) but the controller need not be stable. It often is stable 
and this is preferable for implementation purposes. 

The frequency response of the controller is given in Figure 7-88. We note that 
the controller rolls off around the frequency range where the uncertainties 
start to become larger. This is what we would expect from a classical point of 
view.

Note that there is not a great deal of low frequency gain. We will subsequently 
see that this is because the noise level is high relative to the error weighting. 

An identical simulation is run to give an idea of the loss of nominal 
performance in the time domain. This is not intended as a comparison between 
k0 and kmu. A more appropriate comparison would also include a simulation of 
a perturbed system. The function dypert can be used to select the worst case 
perturbation. The nominal response of kmu is shown in Figure 7-89. There is 
little deterioration in the nominal response for controller kmu.
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Figure 7-88:  Frequency Response of the µ Synthesis Controller
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Figure 7-89:  Nominal Time Response for the kmu Controller
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The tradeoff between robustness and performance can be further studied by 
independently calculating µ for robust stability, and the closed-loop nominal 
performance. Note that robust stability is a µ test on the v to z block of the 
closed-loop transfer function in Figure 7-82. Three 1 × 1 blocks are specified for 
the robust stability block structure. The robust performance is given by the 
maximum singular value of the w to e block of the closed-loop transfer function. 
Figure 7-90 compares these with robust performance over the frequency range.

Figure 7-90:  Robust Performance, Robust Stability, and Nominal 
Performance for the µ Synthesis Controller

Figure 7-90 illustrates that the nominal performance limits the low frequency 
robust performance. Robust stability does not become an issue except around 
0.01 Hz. This is not surprising as the perturbation weights begin to increase 
around this frequency, yet the controller has only begun to roll off.

These issues can be further investigated by examining smaller subblocks of the 
D-scaled closed-loop system. This form of analysis has been referred to as 
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analysis is performed by calculating the µ upper bound, DMD–1, at each 
frequency. We then look at the maximum singular values of the appropriate 
subblocks. The example will serve as clarification.

The performance inputs, w, are divided into two groups:

• Reference commands

• Noise

There are three groups of performance outputs:

• Tracking errors

• Actuator penalties

• Actuator rate penalties

This give six 2 × 2 transfer function blocks, and for each of these we calculate 
the maximum singular value as a function of frequency.

The results for the temperature inputs are shown in Figure 7-91. The 
calculated nominal performance (maximum singular value of the w to e 
transfer function) is an upper bound for each of the subblock calculations and 
serves as a comparison point. 

The temperature reference command to tracking error transfer function 
dominates those shown in Figure 7-91. However it is only really significant, 
with respect to the nominal performance, in the frequency range 0.001 to 0.01 
Hz. It also has some contribution at lower frequencies. By contrast, the 
actuator penalty has almost no effect on the design. We could change this 
weight significantly without affecting the design. The actuator rate penalty 
starts to influence the design at frequencies above 0.01 Hz.

Figure 7-92 illustrates the subblocks corresponding to the noise inputs. It is 
immediately clear that the noise to tracking error transfer function dominates 
the design at low frequencies. To improve the low frequency nominal 
performance (and the low frequency robust performance) we must reduce the 
noise weights. In practical terms this means buying higher quality sensors.
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Figure 7-91:  DMD–1 Analysis for Temperature Reference Command Inputs
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Figure 7-92:  DMD–1 Analysis for Noise Inputs
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A similar analysis can be used to determine which aspects of the design are 
limiting robust stability. In this case, there are three transfer functions to 
examine; v1 to z1, etc. These are illustrated in Figure 7-93 and compared to 
both robust performance and robust stability. 

Figure 7-93:  DMD–1 Analysis for the Perturbations 
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performance, but if we wish to improve the robust stability, we must reduce 
Wt1. In practical terms this means that we must invest more effort in modeling 
and identifying some of the tank 1 mixing dynamics.

We can also apply this type of analysis at a single frequency. To do this we 
would simply examine the mu upper bound for the closed-loop system at a 
particular frequency. A column with large numbers would indicate that the 
corresponding input was dominating the design. Similarly, a row of large 
numbers would indicate that the corresponding output was dominating the 
design.

This form of analysis is very useful in giving engineering information about the 
limiting factors in the design. As we have illustrated above, it can be used to 
indicate where additional effort (in terms of further modeling/identification, or 
higher quality sensing) is required to improve robust performance.

Experimental Evaluation
We present an experimental comparison between a µ synthesis design and a 
more standard loopshaping controller on the two tank system. The design 
shown here is not identical to that given above as it was calculated and 
implemented several years before µ-Tools was written. However, the method 
and relative weightings were similar.

A simple SISO style loopshaping technique has been used to design controllers 
(Kloop) for comparison purposes. One of the worst case plant conditions, (h1 = 
0.75, t1 = 0.25), was selected as a nominal design point. The controller simply 
inverts the plant to a diagonal loopshape. It is now well known that this 
technique will not work well for high condition number plants, particularly 
those with uncertainty at the input. Refer to the work of Skogestad et al. 
[SkoMD] for further details on this point.

The loopshape chosen was

Figure 7-94 shows the magnitude of the frequency response of Kloop.

t1 loop 100
1 3000s+( )

------------------------------=

t2 loop 100
1 5000s+( )

------------------------------=
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Figure 7-94:  Magnitude Response of the Loopshaping Controller: Kloop

Both controllers have been tested over a wide range of commands. Figure 7-95 
shows a typical command tracking response for the Kloop and Figure 7-96 shows 
the same response for Kmu. The oscillatory behavior of the loopshaping 
controller cannot be alleviated by selecting loopshapes that have a lower 
crossover frequency. These merely produce lower frequency and higher 
amplitude oscillations. It is the method of inverting the plant that leads to this 
problem.
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Figure 7-95:  Experimental Command Response: Controller Kloop with Input 
Temperature Ramps Going from t1 = 0.75, t2 = 0.67 at 80 Seconds to 
t1 = 0.55, t2 = 0.47 at 100 Seconds
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Figure 7-96:  Experimental Command Response: Controller Kmu with Input 
Temperature Ramps Going from t1 = 0.75, t2 = 0.67 at 80 Seconds to t1 = 
0.55, t2 = 0.47 at 100 Seconds
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This chapter contains a detailed description of all µ-Analysis and Synthesis 
Toolbox (µ-Tools) functions. It begins with a list of functions in alphabetical 
order, followed by a list of functions grouped by subject area, and continues 
with a detailed description of each command. Information on each function is 
also available through the MATLAB on-line help facility.

In the summary of commands index and tables, the following abbreviations are 
used:

• CONSTANT matrices are denoted by C

• SYSTEM matrices are denoted by S

• VARYING matrices are denoted by V

Therefore, if a command can be used with either a CONSTANT, SYSTEM or 
VARYING matrix, it may be denoted by CSV.
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Summary of Commands

Command Description

abv Stack CSV matrices above one another

blknorm Block norm of a CV matrix

cf2sys Create a S from a normalized coprime factorization

cjt Conjugate transpose of a CSV matrix

cmmusyn Constant matrix µ synthesis

cos_tr Generate a cosine signal as a V matrix

crand Generate a complex random C matrix (uniform 
distribution)

crandn Generate a complex random C matrix (normal 
distribution)

csord Ordered complex Schur form

daug Diagonal augmentation of CSV matrices

dhfnorm Calculate discrete-time ∞-norm of a stable S matrix

dhfsyn Discrete-time H∞ control design

dkit Automated D – K iteration for µ synthesis

dkitgui Automated D – K iteration GUI for µ synthesis

drawmag Interactive moused-based sketch and fitting tool

dtrsp Discrete-time response of a linear S matrix

dypert Create a rational perturbation from frequency mu output 
data

emargin Calculate normalized coprime factor robust stability 
margin

fitmag Fit magnitude data with a real, rational, transfer function
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fitsys Fit frequency response data with a transfer function

frsp Frequency response of a S matrix

gap Calculate the gap metric for S matrices

genmu Generalized µ-analysis of CV matrices

genphase Generate a minimum phase function from magnitude 
data

getiv Get the independent variable of a V matrix

h2norm Calculate 2-norm of a stable, strictly proper S matrix

h2syn H2 control design

hankmr Optimal Hankel norm approximation of a S matrix

hinffi H∞ full information control design

hinfnorm Calculate ∞-norm of a stable, proper S matrix

hinfsyn H∞ control design

hinfsyne H∞ control design, minimum entropy

indvcmp Compare independent variable data of two V matrices

madd Addition of CSV matrices

magfit Fit frequency response data with a transfer function 
(batch)

massign Assign a portion of a matrix

mfilter Construct a Bessel, Butterworth, Chebychev, or RC filter

minfo Information on a CSV matrix

minv Inverse of CSV matrices

mmult Multiplication of CSV matrices

Command Description
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mprintf Formatted printing of a matrix

mscl Scale (by a scalar) a S or V matrix

msf An interactive D-scaling rational fit routine

msub Subtraction of CSV matrices

mu µ-analysis of CV matrices

muftbtch A batch D-scaling rational fit routine

musynfit An interactive D-scaling rational fit routine

musynflp An interactive D-scaling rational fit routine (linear 
programming)

muunwrap Construct D-scaling and perturbation from mu

ncfsyn H∞ loopshaping control design

nd2sys Convert a SISO transfer function into a S matrix

negangle Calculate angle of CV matrices elements between 0 and –
2π

nugap Calculate the ν (nu) gap for S matrices

pck Create a S matrix from state-space data (A,B,C,D)

pkvnorm Peak norm of a V matrix

pss2sys Convert an [A B;C D] matrix into a µ-Tools S matrix

randel Generate a random perturbation for mu block structure

reordsys Reorder states of a S matrix

ric_eig Solve a Riccati equation via eigenvalue decomposition

ric_schr Solve a Riccati equation via real Schur decomposition

rifd Display real, imaginary, frequency, and damping data

Command Description
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samhld Sample-hold approximation of a continuous S matrix

sbs Stack CSV matrices next to one another

sclin Scale S matrix input

scliv Scale the independent variable of V matrix

sclout Scale S matrix output

sdecomp Decompose a S matrix into two S matrices

sdhfnorm Calculate sample-data ∞-norm of a stable S matrix

sdhfsyn Sample-data H∞ control design

sdtrsp Time response of a sample-data S matrix

see Display SV matrices

seeiv Print independent variables of a V matrix

seesys Formatted SV display

sel Select rows/columns or outputs/inputs of CSV matrices

sfrwtbal Weighted balanced realization of a S matrix

sfrwtbld Stable weighted balanced realization of a S matrix

siggen Generate a signal as a V matrix

simgui A GUI for time simulations of LFTs

sin_tr Generate a sine signal as a V matrix

sisorat Fit a frequency point with a first order, all-pass, stable 
function

sncfbal Balanced realization of coprime factors of a S matrix

sortiv Sort independent variable of a V matrix

spoles Poles of a S matrix

Command Description
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srelbal Stochastic balanced realization of a S matrix

sresid Residualize states of a S matrix

starp Redheffer star product

statecc Apply a coordinate transformation to S matrices

step_tr Generate a step signal as a V matrix

strans Bidiagonal coordinate transformation of S matrices

strunc Truncate states of a S matrix

sys2pss Extract the state-space matrix [A B; C D] from a S 
matrix

sysbal Balanced realization of a S matrix

sysic System interconnection program

sysrand Generate a random S matrix

szeros Transmission zeros of a S matrix

tackon String together V matrices

transp Transpose of SV matrices

trsp Time response of a linear S matrix

tustin Prewarped continuous-time to discrete-time S 
transformation

unum Input or column dimension of CSV matrix

unpck Extract state-space data (A,B,C,D) from a S matrix

unwrapd Construct D-scaling from mu

unwrapp Construct ∆ perturbation from mu

vabs Absolute value of a CV matrix

Command Description
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var2con Convert a V matrix to a C matrix

varyrand Generate a random V matrix

vceil Round elements of CV matrices towards ∞

vcjt Conjugate transpace of CV matrices

vdcmate Decimate a V matrix

vdet Determinant of CV matrices

vdiag Diagonal of CV matrices

vebe Element-by-element operations on V matrices

veig Eigenvalue decomposition of CV matrices

veval Evaluate general functions of V matrices

vexpm Exponential of CV matrices

vfind Find individual elements of a V matrix

vfft FFT for V matrices

vfloor Round elements of CV matrices towards –∞

vifft Inverse FFT for V matrices

vimag Imaginary part of a CV matrix

vinterp Interpolate V matrices

vinv Inverse of a CV matrix

vldiv Left division of CV matrices

vnorm Norm of CV matrices

vpck Pack a V matrix

vpinv Pseudoinverse of a CV matrix

vplot Plot CV matrices

Command Description
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vpoly Characteristic polynomial of CV matrices

vrcond Condition number of a CV matrix

vrdiv Right division of CV matrices

vreal Real part of a CV matrix

vrho Spectral radius of a CV matrix

vroots Polynomial roots of CV matrices

vschur Schur form of a CV matrix

vspect Signal processing spectrum command for V matrices

vsvd Singular value decomposition of a CV matrix

vtp Transpose of CV matrices

vunpck Unpack a V matrix

vzoom Mouse-driven axis selection of plot window

wcperf Worst-case performance for given uncertainty level

wsgui A MATLAB workspace GUI

xnum State dimension of a S matrix

xtract Extract portions of a V matrix using independent 
variables

xtracti Extract portions of a V matrix

ynum Output or row dimension of a CSV matrix

zp2sys Convert transfer function poles and zeros into a S matrix

Command Description



8 Reference

8-10

Commands Grouped by Function

Standard Operations/Basic Functions

abv Stack CSV matrices above one another 

cjt Conjugate transpose of SV matrices

daug Diagonal augmentation of CSV matrices

madd Addition of CSV matrices

minv Inverse of CSV matrices

mmult Multiplication of CSV matrices

mscl Scale (by a scalar) a SV matrix

msub Subtraction of CSV matrices

sbs Stack CSV matrices next to one another

sclin Scale S matrix input

sclout Scale S matrix output

sel Select CSV matrix rows/columns or outputs/inputs

starp Redheffer star product

transp Transpose of SV matrices
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Matrix Information, Display and Plotting

drawmag Interactive mouse-based sketch and fitting tool

minfo Information on a matrix

mprintf Formatted printing of a matrix

rifd Display real, imaginary, frequency, and damping data

see Display SV matrices

seeiv Display independent variables of a V matrix

seesys Formatted SV display

unum Input or column dimension of a CSV matrix

vplot Plotting CV matrices

vzoom Mouse-driven axis selection of plot window

wsgui A MATLAB workspace GUI

xnum State dimension of a S matrix

ynum Output or row dimension of a CSV matrix
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Modeling Functions

mfilter Construct a Bessel, Butterworth, Chebychev, or RC filter

nd2sys Convert a SISO transfer function into a µ-Tools S matrix

pck Create a S matrix from state-space data (A, B, C, D)

pss2sys Convert an [A B;C D] matrix into a µ-Tools S matrix

sys2pss Extract state-space matrix [A B; C D] from a S matrix

sysic System interconnection program

unpck Extract state-space data (A,B,C,D) from a S matrix

zp2sys Convert transfer function poles and zeros to a S matrix

SYSTEM Matrix Functions

reordsys Reorder states in a S matrix

samhld Sample-hold approximation of a continuous S matrix

spoles Poles of a S matrix

statecc Apply a coordinate transformation to S matrices

strans Bidiagonal coordinate transformation of S matrices

sysrand Generate a random S matrix

szeros Transmission zeros of a S matrix

tustin Prewarped continuous to discrete S transformation
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Model Reduction Functions

cf2sys Create a S from a normalized coprime factorization

hankmr Optimal Hankel norm approximation of a S matrix

sdecomp Decompose a S matrix into two S matrices

sfrwtbal Frequency weighted balanced realization of a S matrix

sfrwtbld Stable frequency weighted realization of a S matrix

sncfbal Balanced realization of coprime factors of a S matrix

srelbal Stochastic balanced realization of a S matrix

sresid Residualize states of a S matrix

strunc Truncate states of a S matrix

sysbal Balanced realization of a S matrix

SYSTEM Response Functions

cos_tr Generate a cosine signal as a V matrix

dtrsp Discrete-time response of a linear S matrix

frsp Frequency response of a S matrix

sdtrsp Sample data time response of a linear S matrix

siggen Generate a signal as a V matrix

simgui A GUI for time simulations of LFTs

sin_tr Generate a sine signal as a V matrix

step_tr Generate a step signal as a V matrix

trsp Time response of a linear S matrix
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H2 and H∞ Analysis and Synthesis Functions

dhfnorm Calculate discrete-time ∞-norm of a stable S matrix

dhfsyn Discrete-time H∞ control design

emargin Normalized coprime factor robust stability margin

gap Calculate the gap metric between S matrices

h2norm Calculate 2-norm of a stable, strictly proper S matrix

h2syn H2 control design

hinffi H∞ full information control design

hinfnorm Calculate ∞-norm of a stable, proper S matrix

hinfsyn H∞ control design

hinfsyne H∞ minimum entropy control design

ncfsyn H∞ loopshaping control design

nugap Calculate the ν (nu) gap between S matrices

pkvnorm Peak norm of a V matrix

sdhfnorm Sample-data ∞-norm of a stable S matrix

sdhfsyn Sample-data H∞ control design
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Structured Singular Value (µ) Analysis and Synthesis

blknorm Block norm of CV matrices

cmmusyn Constant matrix µ synthesis

dkit Automated D – K iteration for µ synthesis

dkitgui Automated D – K iteration GUI for µ synthesis

dypert Create a rational perturbation from frequency mu data

fitmag Fit magnitude data with real, rational, transfer function

fitmaglp Fit magnitude data with real, rational, transfer function

fitsys Fit frequency response data with transfer function

genphase Generate a minimum phase frequency response to magnitude 
data

genmu Real and complex generalized µ-analysis of CV matrices

magfit Fit magnitude data with real, rational, transfer function (a 
batch process)

mu Real and complex µ-analysis of CV matrices

msf Interactive D-scaling rational fit routine

muftbtch Batch D-scaling rational fit routine

musynfit Interactive D-scaling rational fit routine

musynflp Interactive D-scaling rational fit routine (linear program)

muunwrap Construct D-scaling and ∆ perturbation from mu 

randel Generate a random perturbation

sisorat Fit a frequency point with first order, all-pass, stable transfer 
function

unwrapd Construct D-scaling from mu 
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unwrapp Construct ∆ perturbation from mu 

wcperf Worst-case performance for a given ∆

VARYING Matrix Manipulation

getiv Get the independent variable of a V matrix

indvcmp Compare the independent variable data of two V matrices

scliv Scale the independent variable of a V matrix

sortiv Sort the independent variable of a V matrix

tackon String together V matrices

var2con Convert a V matrix to a C matrix

varyrand Generate a random V matrix

vfind Find individual elements of a V matrix

vpck Pack a V matrix

vunpck Unpack a V matrix

xtract Extract portions of a V matrix

xtracti Extract portions of a V matrix using independent variable

Structured Singular Value (µ) Analysis and Synthesis
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Standard MATLAB Commands for VARYING Matrices

vabs Absolute value of a CV matrix

vceil Round elements of CV matrices towards ∞

vdet Determinant of CV matrices

vdiag Diagonal of CV matrices

veig Eigenvalue decomposition of CV matrices

vexpm Exponential of CV matrices

vfft FFT for V matrices

vfloor Round elements of CV matrices towards –∞

vifft Inverse FFT for V matrices

vimag Imaginary part of a CV matrix

vinv Inverse of a CV matrix

vnorm Norm of CV matrices

vpinv Pseudoinverse of a CV matrix

vpoly Characteristic polynomial of CV matrices

vrcond Condition number of a CV matrix

vreal Real part of a CV matrix

vroots Polynomial roots of CV matrices

vschur Schur form of a CV matrix

vspect Signal processing spectrum command for V matrices

vsvd Singular value decomposition of a CV matrix
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Additional VARYING Matrix Functions

vcjt Conjugate transpose of CV matrices

vdcmate Decimate V matrices

vebe Element-by-element operations on V matrices

veval Evaluate general functions of V matrices

vinterp Interpolate V matrices

vldiv Left division of CV matrices

vrdiv Right division of CV matrices

vrho Spectral radius of a CV matrix

vtp Transpose of CV matrices

Utilities and Miscellaneous Functions

crand Complex random matrix generator (uniform distribution)

crandn Complex random matrix generator (normal distribution)

csord Order complex Schur form matrices

massign Assign a portion of a matrix to another

negangle Calculate angle of matrix elements between 0 and –2π

ric_eig Solve a Riccati equation via eigenvalue decomposition

ric_schr Solve a Riccati equation via real Schur decomposition
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8abv, daug, sbsPurpose Augment CONSTANT, SYSTEM and VARYING matrices

Syntax out = abv(mat1,mat2,...,matN) 
out = daug(mat1,mat2,...,matN) 
out = sbs(mat1,mat2,...,matN)

Description abv places the matrix mat1 above the matrix mat2. daug places the input 
matrices on the diagonal of the output matrix. sbs places the input matrices 
next to one another. All these commands, abv, daug, and sbs, allow the use of 
multiple input arguments inputs (up to nine). CONSTANT, SYSTEM, and 
VARYING matrices can be placed by one another based on the following table.

The input matrices must be compatible in the respective dimension in order for 
the function to be performed. abv requires the same number of columns (inputs 
for SYSTEM matrices) and sbs requires the input matrices to have the same 
number of rows (outputs for SYSTEM matrices).

Pictorial Representation of Functions

mat1

mat2

CONSTANT SYSTEM VARYING

CONSTANT yes yes yes

SYSTEM yes yes no 

VARYING yes no yes
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Examples Create two CONSTANT matrices a and b along with two SYSTEM matrices p1 
and p2. Examples of manipulation using abv, daug, and sbs are shown in the 
following examples.

a = [1 2 3; 4 5 6];
b = [7 7 7; 8 8 8 ];
pl = pck(-10,1,10,0);
p2 = pck(-3,2,4,.1),
seesys(abv(p1,p2))

-1.0e+01    0.0e+00   |  1.0e+00
 0.0e+00   -3.0e+00   |  2.0e+00
---------------------------------
 0.0e+01    0.0e+00   |  0.0e+00
 0.0e+01    4.0e+00   |  1.0e-00

out = abv(a,b,b)
out =

1     2     3
4     5     6
7     7     7
8     8     8
7     7     7
8     8     8

out = daug(a,b)
out = 

1     2     3     0     0     0
4     5     6     0     0     0
0     0     0     7     7     7
0     0     0     8     8     8

out = sbs(p1,p2);
seesys = out

-1.0e+01    0.0e+00   |  1.0e+00    0.0e+00
 0.0e+00   -3.0e+00   |  0.0e+00    2.0e+00
--------------------------------------------
 1.0e+01    4.0e+00   |  0.0e+00    1.0e-01
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 minfo(out)
system:2states1 outputs2 inputs
out = sbs(a,b,a)
out =
1     2     3     7     7     7     1     2     3
4     5     6     8     8     8     4     5     6

See Also madd, mmult, sel, vdiag
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8blknormPurpose Create a matrix which is made up of norms of subblocks. Used in conjunction 
with mu (µ)

Syntax matout = blknorm(matin,blk)

Description blknorm computes the maximum singular value of the subblocks of matin, 
using the information in the perturbation block structure, blk. The output of 
blknorm is matout whose entries are the maximum singular value of the 
subblocks of matin with these norms as elements. This helps to show which 
parts of the matrix are contributing to making µ large. A more complete 
description of the perturbation block structure, blk, can be found with the 
command mu and in Chapter 4. blknorm is best used on scaled matrices from 
the upper bound for µ. Repeated δI blocks are treated the same way as full 
blocks. The function blknorm can be applied to both CONSTANT and 
VARYING matrices.

Examples Create a 4 × 3 random matrix and determine its subblock norms for two 
different block structures. The first block structure consists of a two element 
repeated block and a 1 × 2 full block. The second block structure consists of a 1 
× 1 block, a 1 × 2 full block, and a 1 × 1 block.

m = crand(4,3);
disp(m)

0.7012 + 0.9826i    0.0475 + 0.0727i    0.7564 + 0.4364i
0.9103 + 0.7227i    0.7361 + 0.6316i    0.9910 + 0.7665i
0.7622 + 0.7534i    0.3282 + 0.8847i    0.3653 + 0.4777i
0.2625 + 0.6515i    0.6326 + 0.2727i    0.2470 + 0.2378i

disp(blknorm(m,[2 0; 1 2]))
1.8498    1.5272
1.6656    0.6923

mprintf(blknorm(m,[1 1; 1 2; 1 1]), '%6.2f')
1.21    0.09    0.87
1.58    1.35    1.39
0.70    0.69    0.34
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Algorithm The maximum singular value of each block associated with the blk structure 
is calculated via the MATLAB norm.

See Also mu, norm, vnorm
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8cjt, transp, vcjt, vtpPurpose Transpose and conjugate transpose of CONSTANT, SYSTEM and VARYING 
matrices

Syntax out = cjt(mat) 
out = transp(mat) 
out = vcjt(mat) 
out = vtp(mat)

Description cjt forms the complex conjugate transpose of the input matrix mat and transp
forms the transpose of mat. transp outputs similar results to the MATLAB 
command .′. These commands also work on SYSTEM and VARYING matrices. 
For consistency in our naming convention, vcjt and vtp are the same 
commands as cjt and transp, but work on just CONSTANT and VARYING 
matrices.

For a SYSTEM matrix mat, transp, and cjt are defined as

mat A B
C D

=

transp(mat) A.’ C.’
B.’ D.’

,= cjt(mat) A– ’ C– ’
B– ’ D– ’

=
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Examples Create a SYSTEM matrix and calculate its transpose and conjugate transpose 
using cjt and transp.

A = [-10 0; 0 3]; 
B = [1 0 3; 0 2 -9]; 
C = [10 0; 0 4];
D = [0 -.2 -45; .82 0 .1];
out = pck(A,B,C,D);
seesys (out, '%5 .2g')

-10     0   |    1       0       3
 0      3   |    0       2      -9
--------------------------------------
 10     0   |    0     -.2     -45
 0      4   |     .82    0       .1

x = transp (out);
seesys (x, '%5 .2g')

-10     0   |    10      0
 0      3   |    0       4
---------------------------
 1      0   |    0      .82
 0      2   |   -.2      0 
 3     -9   |   -45     .1

x = cjt(out);
seesys (x, '%5 .2g')

10     0   |    -10      0
 0     3   |     0      -4
---------------------------
 1     0   |     0      .82
 0     2   |   -.2       0 
 3    -9   |   -45      .1
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Algorithm These functions call the MATLAB commands ′ and .′ consistent with the type 
of input matrices.

See Also vdiag
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8cmmusynPurpose Approximately solves the constant-matrix µ-synthesis problem, via the 
minimization

for given matrices R ∈ Cn×m, U ∈ Cn×r,V ∈ Ct×m, and a set ∆ ⊂ Cm×n.

Syntax [bnd,dvec,gvec,qopt] = cmmusyn(R,U,V,blk);

Algorithm This works for CONSTANT or VARYING data in R, U, and V. If two or more 
matrices are VARYING, the independent variable values of these matrices 
must be the same.

The approximation to solving the constant matrix µ synthesis problem is 
two-fold: only the upper bound for µ is minimized, and the minimzation is not 
convex, hence the optimum is generally not found. If U is full column rank, or 
V is full row rank, then the problem can (and is) cast as a convex problem, 
[PacZPB], and the global optimizer (for the upper bound for µ) is calculated.

The upper bound is returned in bnd, and the optimizing Q is returned in qopt. 
The scaling matrices associated with the upper bound are in dvec and gvec and 
may be unwrapped into block diagonal form using muunwrap.

Reference Packard, A.K., K. Zhou, P. Pandey, and G. Becker, “A collection of robust 
control problems leading to LMI’s,” 30th IEEE Conference on Decision and 
Control, pp. 1245–1250, Brighton, UK, 1991.

See Also genmu, mu

minQ Cr t×∈ µ∆ R UQV+( )
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8cos_tr, sin_tr, step_trPurpose Generate a VARYING matrix containing a cosine, sine, or step signal at an 
evenly spaced time interval

Syntax out = cos_tr(freq,mag,tinc,lastt) 
out = sin_tr(freq,mag,tinc,lastt) 
out = step_tr(timedata,stepdata,tinc,lastt)

Description cos_tr, sin_tr, and step_tr generate time signals for use with the trsp (time 
response) command. The following are the input variables provided to cos_tr 
and sin_tr. 

Inputs to cos_tr and sin_tr:

Output:

Inputs to step_tr: 

Output:

freq frequency of the cosine (sine) signal (radians/second) 

mag magnitude of signal

tinc time step (increment)

lastt final time (the signal starts at time t=0)

out time varying matrix of the cosine (sine) signal

timedata time at which step occurs (vector)

stepdata magnitude of step (vector)

tinc time step (increment)

lastt final time (the signal starts at time t=0)

out time varying matrix of steps
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Examples Synthesize a cosine signal with a 1 Hz frequency and of magnitude 1.5, 5 
seconds in length. The time increment is .05 second. 

out=cos_tr(2*pi,1.5,.05,5); 
vplt('iv,d',out) 
grid 
title('Generate a cosine signal via cos_tr') 
xlabel('time (seconds)') 
ylabel('Magnitude')

Algorithm cos_tr and sin_tr call the MATLAB commands cos and sin, respectively.

See Also minfo, siggen, trsp, vpck
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8crand, crandn, sysrand, varyrandPurpose Generate a random complex CONSTANT, SYSTEM or VARYING matrix

Syntax out = crand(n,m) 
out = crandn(n,m) 
sys = sysrand(nstates,ninputs,noutputs,stabflag) 
vary = varyrand(rdim,cdim,nindv,ivflg)

Description crand and crandn generate random complex matrices of dimensions n × m, 
using the MATLAB rand and randn commands, respectively. crand elements 
are uniformly distributed and crandn elements are normally distributed.

Inputs to crand and crandn:

Output from crand and crandn:

sysrand generates a random SYSTEM matrix with nstates states, ninputs 
inputs, and noutputs outputs. Setting the stabflag to 1 will result in a stable, 
random SYSTEM. The default for stabflag is 0.

varyrand creates a random VARYING matrix with a specified number of rows 
(rdim), columns (cdim), and independent variable values (nindv). The optional 
argument ivflg sorts the independent variables to be monotonically 
increasing if it is set to 0 (default). Otherwise, if ivflg is set to a nonzero value, 
no sorting is done.

n number of rows of the output matrix

m number of columns of the output matrix

out an n × m complex matrix of random elements
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Examples Create a CONSTANT, complex random matrix and a random SYSTEM matrix 
using the commands crand and sysrand

crand(4,3)
ans =
0.4764 + 0.1622i     0.9017 + 0.1351i     0.4103 + 0.4523i
0.3893 + 0.0711i     0.4265 + 0.7832i     0.1312 + 0.8089i
0.2033 + 0.3653i     0.1420 + 0.4553i     0.8856 + 0.9317i
0.0284 + 0.2531i     0.9475 + 0.3495i     0.0922 + 0.6516i

sys=sysrand(2,4,1);
seesys(sys)

0.2190    0.6789  |   0.9347    0.5194    0.0346    0.5297
0.0470    0.6793  |   0.3835    0.8310    0.0535    0.6711
------------------|----------------------------------------
0.0077    0.3834  |   0.0668    0.4175    0.6868    0.5890

See Also minfo, pck, pss2sys, rand, randel, sys2pss, unpck, vpck, vunpck
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8csordPurpose Compute an ordered, complex Schur form matrix

Syntax [v,t,flgout,reig_min] = csord(m,epp,flgord,flgjw,flgeig)

Description The csord function produces an ordered, complex Schur form matrix of the 
input CONSTANT square matrix m with

The MATLAB function schur is called, which results in an unordered Schur 
form matrix. The subroutine cgivens forms a complex Givens rotation matrix, 
which orders the t matrix as you define it. The v matrix is the transformation 
matrix. A series of optional input flags can be set.

The output flag flgout is nominally 0. flout is set to 1 if there are jω-axis 
eigenvalues, set to 2 if there are an unequal number of positive and negative 
eigenvalues, or set to 3 if both conditions occur. The fourth output argument, 
reig_min, is the minimum, magnitude real part of the eigenvalues of m.

epp user-supplied zero tolerance (default epp = 0) 

flgord=0

flgord=1

order eigenvalues in ascending real part (default)

partial real part ordering, with real parts less than zero first, 
then the jω axis eigenvalues and finally the real parts greater 
than zero

flgjw=0

flgjw=1

no exit condition on eigenvalue location (default)

exit if abs(real(eigenvalues(i)))< epp

flgeig=0

flgeig=1

no exit condition on half-plane eigenvalue distribution (default) 

exit if length(real(eigenvalues)>0) = length(real(eigenvalues)<0)

t
t11 t12

0 t22

==v′ * m * v
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The ric_schr routine calls csord to solve for a stabilizing solution to a matrix 
Riccati equation. In this case, the m matrix has a special structure, and failure 
modes are flagged to avoid extra, unnecessary computations.

Algorithm The eigenvalues are reordered by iterating through each of them and 
interchanging them via a bubble sort based on the input flag, flgord. The 
subroutine cgivens exchanges the out of order eigenvalues.

Reference Golub, G.H. and C.F. Van Loan, Matrix Computations, The Johns Hopkins 
University Press, 1983.

See Also cgivens, ric_schr, rsf2csf, schur
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8dhfnormPurpose dhfnorm computes the H∞ gain of a stable, discrete-time SYSTEM matrix

Syntax out = dhfnorm(sys,ttol,h,iiloc)

Description dhfnorm computes the H∞ norm of a stable, discrete-time SYSTEM. It converts 
the SYSTEM to continuous-time via a bilinear transformation and then calls 
the routine hinfnorm.

The method uses the bilinear transformation from the z-plane to the s-plane 
given by,

where h is the time between samples. This is a transformation between the 
unit disk and the left half plane. If the system p has a pole close to z = –1, then 
a preliminary output feedback is used to move such poles before the bilinear 
transformation is performed.

Input arguments:

Output arguments:

Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

See Also hinfsyne, hinffi, hinfnorm, hinfsyn, h2syn, h2norm, ric_eig, ric_schr, 
sdhfnorm, sdhfsyn

sys SYSTEM matrix (discrete-time), CONSTANT or VARYING 
matrix

ttol relative tolerance of accuracy for SYSTEM matrices only,(default 
= 0.001)

h time between samples (default 1) 

iiloc initial estimate of worst case frequency (optional)

out a 1 × 3 vector giving a lower bound, upper bound and 
the frequency where the lower bound occurs.

z 1 sh 2⁄+
1 sh 2⁄–
-----------------------= , s 2z 1–

hz 1+
----------------=
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8dhfsynPurpose dhfsyn computes an H∞ controller for a discrete-time SYSTEM interconnection 
matrix

Syntax [k,g,gfin,ax,ay,hamx,hamy] = dhfsyn(p,nmeas,ncon,...
gmin,gmax,tol,h,z0,quiet,ricmethd,epr,epp)

Description dhfsyn calculates a discrete-time H∞ controller that achieves the infinity norm 
gfin for the interconnection structure p. The controller, k, stablizes the 
discrete-time SYSTEM matrix p and has the same number of states as p. The 
SYSTEM p is partitioned

where B1 are the disturbance inputs, B2 are the control inputs, C1 are the 
errors to be kept small, and C2 are the output measurements provided to the 
controller. B2 has column size (ncon) and C2 has row size (nmeas).

The closed-loop system is returned in g. The same bilinear transformation 
method described for dhfnorm is used. The controller k is returned that 
minimizes the entropy integral,

The program calls the continuous-time routine hinfsyne and the 
corresponding conditions and tests need to be satisfied.

p

A B1 B2

C1 D11 D12

C2 D21 D22

=

I gfin
2

2π
-----------– log det

π–

π

∫ I gfin
2–

g ejθ( )′g ejθ( )–( ) 1 z0
2––

ejθ z0 1–
–

2
-------------------------------dθ=
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Input arguments

Output arguments:

p SYSTEM interconnection structure matrix, (stable, discrete 
time) 

nmeas number of measurements output to controller 

ncon number of control inputs 

gmin lower bound on γ

gmax upper bound on γ 

tol relative difference between final γ values

h time between samples (optional)

z0 point at which entropy is evaluated (default ∞)

quiet  controls printing on the screen
1. no printing
0. header not printed
–1. full printing (default)

ricmethod 1.Eigenvalue decomposition (with balancing) 
–1. Eigenvalue decomposition (without balancing)
2. Schur decomposition (with balancing, default) 
–2. Schur decomposition (without balancing) 

epr measure of when a real part of an eigenvalue of the 
Hamiltonian matrix is zero (default epr = 1e–10)

epp positive definite determination of the X∞ and Y∞ solution 
(default epp = 1e–6)

k H∞ (sub) optimal controller (discrete time) 

g closed-loop system with H∞ controller (discrete time)

gfin final γ value associated with k and g 

ax  X∞ Riccati solution as a VARYING matrix with independent 
variable γ
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Note that the outputs ax, ay, hamx, and hamy correspond to the equivalent 
continuous-time problems and can also be scaled and/or balanced.

The dhfsyn program outputs several variables, which can be checked to ensure 
that the above conditions are being met. For each γ value the minimum 
magnitude, real part of the eigenvalues of the X Hamiltonian matrices is 
displayed along with the minimum eigenvalue of X∞, which is the solution to 
the X Riccati equation. A # sign is placed to the right of the condition that failed 
in the printout. This additional information can aid you in the control design 
process.

Algorithm dhfsyn uses the above bilinear transformation to continuous-time and then the 
formulae described in the Glover and Doyle paper for solution to the optimal 
H∞ control design problem.

Subroutines called. hinfsyne, hinf_st, hinf_gam, hinfe_c:
hinf_gam calls ric_eig, ric_schr, csord, and cgivens

Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers 
that satisfy an H∞ norm bound and relations to risk sensitivity,” Systems and 
Control Letters, vol. 11, pp. 167–172, 1988.

See Also hinfsyne, hinffi, hinfnorm, hinfsyn, h2syn, h2norm, ric_eig, ric_schr, 
sdhfnorm, sdhfsyn

ay  Y∞ Riccati solution as a VARYING matrix with independent 
variable γ

hamx X∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ 

hamy Y∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ
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8dkitPurpose A script file for µ synthesis via D–K iteration

Syntax dkit

Description dkit is a µ-Tools script file for D–K iteration. The D–K iteration procedure is 
an approximation to µ synthesis control design. It involves a sequence of 
minimizations, first over the controller variable K (holding the D variable 
associated with the scaled µ upper bound fixed), and then over the D variable 
(holding the controller K variable fixed). The D–K iteration procedure is not 
guaranteed to converge to the minimum µ value, but often works well in 
practice. A detailed description of the D–K iteration can be found in Chapter 5.

dkit automates the D–K iteration procedure but requires the initialization of 
several variables. The file dk_defin.m is an example of the information 
required by dkit. You can copy this file from the µ-Tools subroutine directory 
mutools/subs and modify it for your application. This file can also be renamed. 
After renaming, assign the variable DK_DEF_NAME in the MATLAB workspace 
to the (character string) name of the new file containing the user-defined 
variables for dkit. For example, if the filename containing the setup data is 
himat_def.m, then

DK_DEF_NAME = 'himat_def';

should be executed in the MATLAB workspace.

The following is a list of what occurs during a single, complete step of the D–K 
iteration.

1 Upon running dkit, the program prompts you for starting D–K iteration 
number.
Starting mu iteration #:

Type 1 to indicate the first D–K iteration.

2 (In the 1st iteration, this step is skipped.) The µ calculation (from the 
previous step) provides a frequency-dependent scaling matrices, Df. The 
fitting procedure is interactive (msf), and fits these scalings with rational, 
stable transfer function matrices, . 

After fitting, plots of

D̂ s( )

σ Df jω( )FL P K,( ) jω( )Df
1– jω( )( )
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and

are shown for comparison.

3 (In the 1st iteration, this step is skipped.) The rational  is absorbed into 
the open-loop interconnnection for the next controller synthesis. Using 
either (based on GMAX_DK_PLAN, see below) the previous 
frequency-dependent D’s or the just-fit rational , an estimate of an 
appropriate value for GMAX_DK is made. This is simply a conservative value 
of the scaled closed- loop H∞ norm, using the most recent controller and 
either a frequency sweep (using the frequency-dependent Ds) or a 
state-space calculation (with the rational D’s).

4 (In the 1st iteration, this step is skipped.) The parameters that will be used 
in the upcoming hinfsyn are displayed. It is your option to change any/all/
none of these.

5 (The 1st iteration begins at this point.) A controller is designed using H∞ 
synthesis on the scaled open-loop interconnection. 

a The progress of the γ-iteration is displayed. 

b The singular values of the closed-loop frequency response are plotted. 

c You are given the option to change the frequency range (OMEGA_DK). If you 
change it, all relevant frequency responses are automatically 
recomputed.

d You are given the option to rerun the H∞ synthesis with modified hinfsyn 
parameters. This is convienient if, for instance, the bisection tolerance 
was too large, or if GMAX_DK was too small.

6 Using the block structure BLK_DK, bounds for the structured singular value 
of the closed-loop system are calculated and plotted.

7 An iteration summary is displayed, showing all of the controller order, as 
well as the peak value of µ of the closed-loop frequency responses.

8 The choice of stopping, or performing another iteration is given.

Subsequent iterations proceed along the same lines without the need to 
re-enter the iteration number. A summary at the end of each iteration is 
updated to reflect data from all previous iterations. This often provides 

σ D̂ jω( )FL P K,( ) jω( )D̂f
1–

jω( )( )

D̂

D̂
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valuable information about the progress of the robust controller synthesis 
procedure.

To continue iterating on a problem that was started earlier, make sure the 
relevent data is in the workspace, run dkit and type the number of the 
iteration you would like to begin.

The following is a list of the variables that you must set (in either dk_defin file 
or the file defined by DK_DEF_NAME) and their meanings.

The following is a list of the optional variables that may be set (in either 
dk_defin file or the file defined by DK_DEF_NAME) and their meanings.

NOMINAL_DK Nominal plant interconnection structure, a µ-Tools 
SYSTEM matrix.

NMEAS_DK Number of sensor measurements.

NCONT_DK Number of control inputs. 

BLK_DK Block structure forµ calculation, used by mu.

OMEGA_DK Frequency response range.

GMIN_DK Lower bound for first H∞ controller design

GMAX_DK Upper bound for first H∞ controller design

GTOL_DK H∞ bisection tolerance for first iteration

GMAX_DK_PLAN Estimates for GMAX_DK in subsequent iterations are made 
in three manners. The value of GMAX_DK_PLAN determines 
which formula is used:

0 Use previous GMAX_DK 

1 use 1.2*pkvnorm(peak_mu_value)

2 use hinfnorm(mmult(dsysL,clp,minv(dsysR)))
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A number of variables are saved in the workspace after each iteration. Some of 
these variables are required every iteration, hence, it doesn’t make sense to 
recompute them. The other variables are outputs from the D–K iteration 
procedure. The variables saved after each iteration are

Fitting D-Scalings
The D-scale fitting procedure is interactive and uses the µ-Tools command msf. 
During step 2 of the D–K iteration procedure, you are prompted to enter your 
choice of options for fitting the D-scaling data. After pressing return, the 
following is a list of your options.

Enter Choice (return for list):
Choices:
nd          Move to Next D-Scaling
nb          Move to Next D-Block

bnds_dk(i) Frequency domain upper and lower bounds for µ 
associated with the ith iteration. The (i) denotes the ith 
iteration which is augmented to the name by the program 
dkit.

dl_dk(i) Left state-space D-scale associated with ith iteration. The 
(i) denotes the ith iteration which is augmented to the 
name by the program dkit. Hence, dl_dk5 would be the 
left state-space D-scale from the fifth iteration.

dr_dk(i) Right state-space D-scale associated with ith iteration. 
Same notation.

Dscale_dk(i) D-scaling data output from mu associated with ith 
iteration. Dscale_dk(i) is in compressed form. Same 
notation.

gf_dk(i) The H∞ norm of the ith iteration closed-loop system. Same 
notation.

k_dk(i) Controller from the ith iteration. Same notation.

nom_dk_g Frequency response of NOMINAL_DK using OMEGA_DK.

sens_dk(i) Sensitivity data output from the ith iteration mu 
calculation. Same notation.
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i           Increment Fit Order
d           Decrement Fit Order
apf         Auto-PreFit
mx 3        Change Max-Order to 3
at 1.01     Change Auto-PreFit tol to 1.01
0           Fit with zeroth order
2           Fit with second order
n           Fit with n'th order
e           Exit with Current Fittings
s           See Status

• nd and nb allow you to move from one D-scale data to another. nd moves to 
the next scaling, whereas nb moves to the next scaling block. For scalar 
D-scalings, these are identical operations, but for problems with full 
D-scalings, (perturbations of the form δI) they are different. In the (1,2) 
subplot window, the title displays the D-scaling Block number, the row/
column of the scaling that is currently being fit, and the order of the current 
fit (with d for data, when no fit exists).

• The order of the current fit can be incremented or decremented (by 1) using 
i and d.

• apf automatically fits each D-scaling data. The default maximum state order 
of individual D-scaling is 5. The mx variable allows you to change the 
maximum D-scaling state order used in the automatic prefitting routine. mx 
must be a positive, nonzero integer. at allows you to define how close the 
rational, scaled µ upper bound is to approximate the actual µ upper bound in 
a norm sense. Setting at 1 would require an exact fit of the D-scale data, and 
is not allowed. Allowable values for at are greater than 1. This setting plays 
a role (mildly unpredictable, unfortunately) in determining where in the 
(D,K) space the D–K iteration converges.

• Entering a positive integer at the prompt will fit the current D-scale data 
with that state order rational transfer function.

• e exits the D-scale fitting to continue the D–K iteration.

• The variable s will display a status of the current and fits.
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Examples An example of using dkit for D–K iteration is provided in the “HIMAT Robust 
Performance Design Example” in Chapter 7.

Reference Balas, G.J.and J.C. Doyle, “Robust control of flexible modes in the controller 
crossover region,” AIAA Journal of Guidance, Dynamics and Control, Vol. 17, 
no. 2, pp. 370–377, March-April, 1994.

Balas, G.J., A.K. Packard and J.T. Harduvel, “Application of µ-synthesis 
techniques to momentum management and attitude control of the space 
station,” AIAA Guidance, Navigation and Control Conference, New Orleans, 
August 1991.

Doyle, J.C., Doyle, K. Lenz, and A. Packard, “Design examples using 
µ-synthesis: Space shuttle lateral axis FCS during reentry,” NATO ASI Series, 
Modelling, Robustness, and Sensitivity Reduction in Control Systems, vol. 34, 
Springer-Verlag, 1987.

Packard, A., J. Doyle, and G. Balas, “Linear, multivariable robust control with 
a µ perspective,” ASME Journal of Dynamic Systems, Measurement and 
Control, 50th Anniversary Issue, vol. 115, no. 2b, pp. 310–319, June 1993.

Stein, G., and J. Doyle, “Beyond singular values and loopshapes,” AIAA 
Journal of Guidance and Control, vol. 14, no. 1, pp. 5–16, January, 1991.

See Also hinfsyn, hinfnorm, msf, mu
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8dkitguiPurpose A graphical user interface for µ synthesis via D–K iteration

Syntax dkitgui

Description dkitgui is a graphical user interface (GUI) for D–K iteration. The D–K 
iteration procedure is an approximation to µ synthesis control design. It 
involves a sequence of minimizations, first over the controller variable K 
(holding the D variable associated with the scaled µ upper bound fixed), and 
then over the D variable (holding the controller K variable fixed). The D–K 
iteration procedure is not guaranteed to converge to the minimum µ value, but 
often works well in practice. A more detailed description of the D–K iteration 
can be found in Chapter 5.

The GUI tool, dkitgui, has five windows. They are:

• Main Iteration window, which is the main interface for the user during the 
iteration.

• Setup window, where initial data is entered.

• Parameter window, which is occasionally used to modify properties of the 
D–K iteration, such as H∞ parameters, and to select the variables that are 
automatically exported to the workspace each iteration.

• Frequency Response window, where the plots of µ and  of the closed-loop 
transfer function matrix are displayed.

• Scaling window, where the rational fits of the frequency-dependent D-scale 
data are shown, and can be modified.

dkitgui completely automates the D–K iteration procedure. A detailed 
description of dkitgui and its use can be found in Chapter 5.

Examples An example of using dkitgui for D–K iteration is provided in the “HIMAT 
Robust Performance Design Example” section in Chapter 7.

Reference Balas, G.J.and J.C. Doyle, “Robust control of flexible modes in the controller 
crossover region,” AIAA Journal of Guidance, Dynamics and Control, vol. 17, 
no. 2, pp. 370–377, March-April, 1994.

Balas, G.J., A.K. Packard and J.T. Harduvel, “Application of µ-synthesis 
techniques to momentum management and attitude control of the space 

σ
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station,” AIAA Guidance, Navigation and Control Conference, New Orleans, 
pp. 1204–1213, August 1991.

Doyle, J.C., Doyle, K. Lenz, and A. Packard, “Design examples using synthesis: 
Space shuttle lateral axis FCS during reentry,” NATO ASI Series, Modelling, 
Robustness, and Sensitivity Reduction in Control Systems, vol. 34, 
Springer-Verlag, 1987.

Packard, A., J. Doyle, and G. Balas, “Linear, multivariable robust control with 
a perspective,” ASME Journal of Dynamic Systems, Measurement and Control, 
50th Anniversary Issue, vol. 115, no. 2b, pp. 310–319, June 1993.

Stein, G., and J. Doyle, “Beyond singular values and loopshapes,” AIAA 
Journal of Guidance and Control, vol. 14, no. 1, pp. 5–16, January, 1991.

See Also dkit, hinfsyn, hinfnorm, mu, pkvnorm
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8drawmagPurpose Provide an interactive mouse-based log-log sketch and fitting tool

Syntax [sysout,pts] = drawmag(in,init_pts)

Description drawmag interactively uses the mouse in the plot window to create a VARYING 
matrix pts and a stable, minimum-phase SYSTEM sysout, which 
approximately fits, in magnitude, the frequency VARYING matrix in pts.

Input arguments:

Output arguments:

While drawmag is running, all interaction with the program is through the 
mouse and/or the keyboard. The mouse, if there is one, must be in the plot 
window. The program recognizes several commands:

• Clicking the mouse button adds a point at the crosshairs. If the crosshairs 
are outside the plotting window, the points will be plotted when the fitting, 
windowing, or replotting modes are invoked. Typing a is the same as clicking 
the mouse button. 

• Typing r removes the point with frequency nearest that of the crosshairs. 

• Typing any integer between 0-9 fits the existing points with a transfer 
function of that order. The fitting routine approximately minimizes the 
maximum error in a log sense. The new fit is displayed along with the points, 
and the most recent previous fit, if it exists. 

• Typing w uses the crosshair location as the initial point in creating a window. 
Moving the crosshairs and clicking the mouse or pressing any key then gives 
a second point at the new crosshair location. These two points define a new 

in either a VARYING matrix which is plotted each time as a 
reference or a CONSTANT matrix of the form [xmin xmax ymin 
ymax] specifying the plot window on the data. 

init_pts optional VARYING matrix of initial set of points

sysout SYSTEM matrix fitting pts. 

pts VARYING matrix of points.
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window on the data, which is immediately replotted. This is useful in fine 
tuning parts of the data. Windowing may be called repeatedly. 

• Typing p simply replots the data using a window that covers all the current 
data points as well as whatever was specified in in. Typically used after 
windowing to view all the data. 

• Typing k invokes the keyboard using the keyboard command. Caution 
should be exercised when using this option, as it can wreak havoc on the 
program if variables are changed.

See Also axis, ginput, magfitlp, musynfit, vplot
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8dypert, sisoratPurpose dypert operates on output from a VARYING mu (µ) calculation to construct a 
worst-case, real-rational, stable perturbation

sisorat constructs a first-order, real-rational, stable, all-pass transfer 
function that interpolates a particular complex number at a given, positive 
frequency.

Syntax pert = dypert(pvec,blk,bnds); 
pert = dypert(pvec,blk,bnds,blkindex); 
ratfit = sisorat(value);

Description The input to dypert consists of the perturbation pvec, the block structure blk, 
and lower and upper bounds, bnds, produced from a VARYING matrix µ 
calculation. (See the µ-Tools command mu for a more complete description of 
these variables.) By searching in bnds, dypert finds the peak value of the lower 
bound — for example γ, occurring at frequency ω0. dypert then extracts the 
perturbation (call this matrix ∆0) from pvec at the frequency ω0. dypert 
constructs a SYSTEM matrix, pert, which is stable, and has the block-diagonal 
structure associated with blk, and also satisfies the equations

The command dypert can also be called with four input arguments. In this 
case, the last argument is a vector of integers. This vector, blkindex, specifies 
which blocks in the perturbation structure specified by the blk vector, are to be 
used to construct the rational perturbation. For instance, if the block structure 
specified by blk is

pert jω0( ) ∆0 and pert ∞ = 1
γ
---=

∆:=
diag ∆1 δ2I4 4× δ3I2 2× ∆4 ∆5 δ6I3 3× ∆7, , , , , ,[ ] : ∆1 C2 3× ,∈

δ2 C∈ δ3 C∈ ∆4 C4 2×∈ ∆5 C3 3×∈ δ6 C∈ ∆7 C2 1×∈, , , , ,
 
 
 
 
 
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and the fourth argument to dypert is [3 6 4 1] (indicating first, third, fourth, 
and sixth blocks are desired), then the output SYSTEM matrix produced by 
dypert will be a SYSTEM matrix that looks like

This is useful when some of the perturbations are not physical perturbations, 
but correspond to performance objectives, and hence do not need to be 
constructed. Note that regardless of the order in which the numbers occur in 
the fourth argument, the perturbations in the output SYSTEM pert are in 
ascending order. When dypert is called with three arguments, all the 
perturbations are constructed.

The command sisorat is essentially a scalar version of dypert, and is the main 
subroutine for dypert. The input to sisorat is value, a 1 × 1, VARYING 
matrix, with one independent variable value. The independent variable is 
interpreted as a frequency, ω0, and the numerical value of value at that 
frequency is denoted by γ. The output of sisorat is a single-input/single-output 
stable, real, SYSTEM matrix, ratfit, satisfying

Algorithm The main subroutine of dypert is sisorat, which operates on the following 
fact. For any complex number γ, and any real frequency ω0 > 0, there is a real 
number β > 0 such that by proper choice of sign, the equality

holds. This is exactly how sisorat works.

In order to understand how dypert works, recall in Chapter 4, the section 
“Complex Structured Singular Value,” Remark 1 after Definition 2.1. There it 
was shown that each full block of a perturbation that causes singularity can in 

∆1 s( ) 02 2× 02 2× 02 3×

02 3× δ3 s( )I2 2× 02 2× 02 3×

04 3× 04 3× ∆4 s( ) 04 3×

03 3× 03 3× 03 2× δ6 s( )I3 3×

ratfit jω0( ) γ and ratfit jω( ) γ ω∀==

± γ s β–
s β+
------------

s jω0=

γ=
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fact be chosen to be a dyad, and the program mu does this at each independent 
variable value. Hence, the matrix ∆0, as described above, is a diagonal 
augmentation of scalar blocks, and dyads. Given that the ith block is a dyad, 
write it as  for complex vectors yi and xi. Using several calls to 
sisorat, it is possible to create two stable, rational vectors h(s) (column) and 
r(s) (row), such that each element of the vectors is of the form generated by 
sisorat (stable, and flat across frequency), and for each k and l

If we define  then it is stable, and

Performing this on a block-by-block basis produces the entire rational 
perturbation. For the case of a repeated scalar block, that part of the 
perturbation is constructed directly with one call to sisorat and diagonally 
augmented as many times as needed.

See Also mu, randel, svd, vsvd

∆0i
yixi

*=

hk jω0( ) yik
jω0( ) rl jω0( ) xil

jω0( )=,=

∆̂i s( ) := h s( )r s( )

∆̂i ∞ σ= ∆0i
( ) , ∆̂i jω0( ) ∆0i

=
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8fitmag, genphase, fitmaglp, magfitPurpose Fit single-input/single-output magnitude data with a real, rational, minimum 
phase transfer function

Syntax sys = fitmag(magdata,weight,heading,oldfit,...
dmdi,upbd,blk,blknum) 

resp = genphase(d) 
sys = fitmaglp(magdata,weight,heading,oldfit,...

dmdi,upbd,blk,blknum) 
[sys,fit] = magfit(magdata,dim,weight)

Description fitmag fits a stable, minimum phase transfer function to magnitude data, 
magdata, with a supplied frequency domain weighting function, weight. Both 
of these are VARYING matrices, with identical independent variable values. 
fitmag uses genphase to generate phase data, and fitsys to do the fit.

genphase uses the complex-cepstrum algorithm to generate a complex 
frequency response, resp, whose magnitude is equal to the real, positive 
response d, but whose phase corresponds to a stable, minimum phase function. 

fitmaglp has the same inputs, outputs, and user interaction as fitmag , but 
uses a linear programming approach to do the fitting instead of fitsys and 
genphase.

fitmag and fitmaglp have the additional input arguments dmdi, upbd, blk, 
and blknum. These arguments are used exclusively with D–K iteration when 
called by musynfit and musynflp. In this case, the magdata is the dvec output 
of the mu program and corresponds to the blknum’th frequency varying D scale 
to be fit. weight corresponds to a measure of the sensitivity of mu to changes in 
the D scales at each frequency. This is the sens output from mu. heading is a 
string variable denoting the title of the plot and oldfit is usually the D scalings 
from the previous D–K iteration.

dmdi represents the VARYING matrix analyzed using mu. upbd is the upper 
bound calculated using mu of dmdi with the perturbation block structure blk. 
The last argument, blknum, corresponds to the current D scale in the block 
structure being fit with fitmag or fitmaglp. Upon fitting the magnitude data, 
magdata, the resulting transfer function sys is absorbed into the original 
matrix dmdi and plotted along with the mu upper bound on the lower graph. 
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magfit is a batch version of fitmaglp that eliminates the user interaction. The 
weight is optional, but dim is a required argument of parameters for the linear 
program. dim has the form [hmax htol nmin nmax] where

• hmax is a measure of the allowable error in the fit. 

• htol is a measure of the accuracy with which the optimization is carried out. 

• nmin and nmax are the minimum and maximum orders considered for the 
curve fit.

Examples Create a second-order transfer function sys to test fitmag. Fit its magnitude 
data with a first- and second-order transfer function via fitmag.

sys = nd2sys([1 -5 12],[1 2 7]); 
w = logspace(-2,2,200); 
sysg = frsp(sys,w); 
wgt = 0.2; 
wgtg = frsp(wgt,w); 
sysfit = fitmag(vabs(sysg),wgtg); 
ENTER ORDER OF CURVE FIT or 'drawmag' 1

10-1

100

101

10-2 10-1 100 101 102

  1) data    2) newfit 

CURVE FITTING,   W/ORDER = 1

10-1

100

10-2 10-1 100 101 102

weight for fit

ENTER NEW ORDER, ’drawmag’, or NEGATIVE NUMBER TO STOP 
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A first-order fit does not accurately respresent the frequency data as shown in 
the above figure. The solid line represents the curve fit and the dashed line 
represents the original frequency data. You can try and fit the data again with 
a second-order system.

ENTER ORDER, 'drawmag', or NEGATIVE TO STOP 2

ENTER ORDER, 'drawmag', or NEGATIVE TO STOP -1

The second-order fit lies directly on top of the original data, hence it is difficult 
to distinguish the two plots. A -1 is entered at the end of this iteration 
procedure to indicate satisfaction with the results.

Algorithm The algorithm for fitmag is as follows. On a log-log scale, the magnitude data 
is interpolated linearly, with a very fine discretization. Then, using the 
complex cepstrum algorithm, the phase, associated with a stable, minimum 
phase, real, rational transfer function with the same magnitude as the magdata 
variable is generated. This involves two fft’s, and logarithmic/exponential 
conversions. With the new phase data, and the input magnitude data, the 
MATLAB function invfreqs is used to find a real, rational transfer function 
that fits the data. heading is an optional title and oldfit is an optional 

100

101

10-2 10-1 100 101 102

  1) data    2) newfit 

CURVE FITTING,   W/ORDER = 2

10-1

100

10-2 10-1 100 101 102

weight for fit

ENTER NEW ORDER, ’drawmag’, or NEGATIVE NUMBER TO STOP 
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previous fit that can be added to the graphs if they are included. These options 
are used in the program musynfit.

The algorithm for magfit is as follows. The system sys is derived by solving a 
linear program and searching over a parameter h according to the following 
specification. Let m be the given magnitude data, g the transfer function of sys 
and w the values of weight; then h is found such that at each frequency,

where

The order of sys is increased until an h less than hmax is obtained or nmax is 
reached. The minimum value of h at this order is then determined to an 
accuracy of htol.

Problems For problems with very coarse data, fitmag may give incorrect answers, even 
if the data was generated by taking the frequency response of a linear system. 
The inaccuracy arises in the log-log interpolation step, which is used in the 
phase calculation. This step is avoided in magfit. Hence, for coarse data sets, 
magfit should be used. fitmaglp and magfit appear to be sometimes slower 
than fitmag.

Reference Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, 
New Jersey, 1975, pp. 513.

See Also fitsys, invfreqs, musynfit, musynflp, muftbtch

1 r⁄ g
m
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8fitsysPurpose Fits single-input/single-output (SISO), single-input/multi-output (SIMO) and 
multi-input/single-output (MISO) frequency response data with SYSTEM 
matrix

Syntax sys = fitsys(resp,ord,wt,code)

Description fitsys fits frequency response (VARYING) data in resp with a transfer 
function of order ord, using a frequency dependent weight in wt (optional). The 
frequency response data may be either a row (SIMO) or column (MISO). The 
optional frequency dependent weight is a VARYING matrix. This weight may 
be a scalar (1 row, 1 column), or may be the same shape as resp.

The fourth argument, code, is optional. If set to 0 (default), then the fit is as 
described. If code = 1, as in the µ-synthesis routines, it forces the fit to be stable, 
minimum phase, simply by reflecting the poles and zeros if necessary. In this 
case, the response resp comes from the program genphase and already 
corresponds to a stable, minimum phase transfer function. fitsys is called by 
fitmag and msf.

Examples An example of how to use fitsys to derive a SIMO transfer function model is 
provided in the “More Sophisticated SYSTEM Functions” section in Chapter 2.

Algorithm The author of fitsys is Xin Hua Yang.

See Also fitmag, genphase, msf, vspect
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8frspPurpose Calculate the complex frequency response of a linear system

Syntax out = frsp(sys,omega,T,balflg)

Description frsp calculates the complex frequency response of a given SYSTEM matrix 
(sys) for a vector of frequency points (omega). The output matrix out is a 
frequency dependent VARYING matrix containing the frequency response of 
the input system sys at the frequency values contained in the vector omega . 
For systems with multiple inputs and outputs, a multivariable frequency 
response is returned.

Input arguments:

Output arguments

The vector of frequency points is assumed to be real and can be generated from 
the MATLAB command logspace or linspace. Given a continuous system sys, 
of the form

and an input vector, omega , with N frequencies, [ω1, ω2,. . .,ωN], frsp evaluates 
the following equation

sys  SYSTEM matrix 

  response calculated at these frequencies. If another VARYING 
matrix is input here, then its independent variables are used 

T  0 (default) indicates a continuous system. A nonzero value forces 
discrete system evaluation with sample time T (optional)

balflg 0 (default) balances the SYSTEM A matrix prior to  evaluation. A 
nonzero value for balflg leaves the state-space data unchanged 
(optional) 

out  VARYING frequency response matrix

sys A B
C D

=
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C(jωiI – A)–1B + D,    i = 1,. . .,N

You can specify a discrete time evaluation by specifying an optional sampling 
time, T. For the discrete time case each matrix in the VARYING output is given 
by

Note that setting T = 0 implies that a continuous frequency response is to be 
performed and not to evaluate

Examples The SYSTEM matrix sys is constructed to have two inputs and two outputs 
with poles at –2 and –10. A frequency vector omega is constructed with 30 
points log spaced between .1 and 100 rad/s. The complex frequency response of 
sys is calculated and its values between 3.5 and 4.6 rad/s are displayed.

a = [-2 0;0 -10];b = [.2 .12; -.3 .4];c = [.3 .7; 2 -1]; 
sys = pck(a,b,c); 
omega = logspace(-1,2,30); 
sysg = frsp(sys,omega); 
see(xtract(sysg,3.5,4.6))
2 rows 2 columns

iv = 3.56225

-0.0114 - 0.0062i     0.0292 - 0.0165i
 0.0746 - 0.0949i    -0.0067 - 0.0386i

iv = 4.52035

-0.0125 - 0.0032i     0.0262 - 0.0172i
 0.0577 - 0.0853i    -0.0136 - 0.0294i

C e
jωiT A–( )

1–
B D i 1 … N, ,=,+

C e
jωi0 A–( )

1–
B D+
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A frequency response is performed using frsp with the default variables set. A 
plot of the frequency response is shown with the four line types corresponding 
to the sysg(1,1), sysg(1,2), sysg(2,1), and the sysg(2,2) elements.

vplot('bode',sysg); 
title('Complex frequency response example - continuous time')

To demonstrate the calculation of a discrete frequency response, convert this 
system into a digital system via the bilinear transformation. The sample 
frequency is chosen as 100 radians/second.

T = 2*pi/100; 
dsys = tustin(sys,T); 
omega = sort([omega,logspace(0,2,60)]); 
dsysg = frsp(dsys,,T); 
vplot('bode',sysg); 
title('Complex frequency response example - discrete time')

For digital filter design, you can examine the transfer function from 0 to π by 
specifying T = 1. A Chebyshev type II filter is designed and its magnitude is 
plotted to demonstrate this feature.
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[a,b,c,d] = cheby2(11,30,0.3); 
dfilt = pck(a,b,c,d); 
omega = [0:pi/100:pi*99/100]; 
dsysg = frsp(dfilt, omega,1); 
vplot('iv,lm',dsysg); 
xlabel('frequency on unit circle') 
ylabel('Magnitude') 
title('Complex frequency response on the unit circle')

Algorithm The algorithm to calculate the complex frequency response involves an matrix 
inverse problem, which is solved via a Hessenberg matrix. If balflg is set to 0, 
the frequency response balances the SYSTEM A matrix (using the MATLAB 
balance command) prior to calculation of the Hessenberg form.

Note  Balancing the system may cause errors in the frequency response. If 
the output of frsp is questioned, compare the results with balancing and 
without balancing the SYSTEM prior to calculating the frequency response.
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Reference Laub, A.J., “Efficient Multivariable Frequency Response Computations,” IEEE 
Transactions on Automatic Control, vol. AC–26, No. 2, pp. 407–408, April, 
1981.

See Also balance, hess, samhld, tustin, vplot
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8gap, nugapPurpose gap calculates the gap metric between two SYSTEM matrices

nugap calculates the ν gap between two SYSTEM matrices.

Syntax gap = gap(sys1,sys2, ttol)
nugap = nugap (sys1, sys2, ttol)

Description gap and nugap compute the gap and ν gap metrics between two SYSTEM 
matrices. Both quantities give a numerical value δ(G0,G1) between 0 and 1 for 
the distance between a nominal system sys1 (G0) and a perturbed system sys2 
(G1). The gap metric was introduced into the control literature by Zames and 
El-Sakkary, 1980, and exploited by Georgiou and Smith, 1990. The ν gap 
metric was derived by Vinnicombe, 1993. For both of these metrics the 
following robust performance result holds from Qui and Davidson, 1992, and 
Vinnicombe, 1993

arcsin b(G1,K1) ≥ arcsin b(G0,K0)– arcsin δ(G0,G1)– arcsin δ(K0,K1)

where

The interpretation of this result is that if a nominal plant G0 is stabilized by 
controller K0, with “stability margin” b(G0,K0), then the stability margin when 
G0 is perturbed to G1 and K0 is perturbed to K1 is degraded by no more than the 
above formula. Note that 1/b(G,K) is also the signal gain from disturbances on 
the plant input and output to the input and output of the controller. The ν gap 
is always less than or equal to the gap, so its predictions using the above 
robustness result are tighter. To make use of the gap metrics in robust design, 
weighting functions need to be introduced. In the above robustness result, G 
needs to be replaced by W2GW1 and K by (similarly for G0, G1, K0 and 
K1). This makes the weighting functions compatible with the weighting 
structure in the “Loop Shaping Using H• Synthesis” section in Chapter 3. 
Model reduction of the system model and controller can be performed by using 
balanced truncations or Hankel norm approximation of normalized coprime 
factor representations.

ttol defines the tolerance to which the gap is computed. The default is 0.001.

b G K,( ) I
K

I GK–( ) 1– G I[ ]
∞

1–

=

W1
1– KW2

1–
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Algorithm Tryphon Georgiou and Malcolm Smith wrote the gap program.

The computation of the gap amounts to solving 2-block H∞-problems, Georgiou, 
1988. The particular method used here for solving the H∞-problems is based on 
Green et al., 1990. The computation of the nugap uses the method of 
Vinnicombe, 1993.

Reference Georgiou, T.T., On the computation of the gap metric, Systems Control Letters, 
vol. 11, pp. 253–257, 1988.

Georgiou, T.T., and M. Smith, “Optimal robustness in the gap metric,” IEEE 
Transactions on Automatic Control, vol. 35, pp. 673–686, 1990.

Green, M., K. Glover, D. Limebeer, and J.C. Doyle, “A J-spectral factorization 
approach to H∞ control,” SIAM J. of Control and Opt., 28(6), pp. 1350–1371, 
1990.

Qiu, L., and E.J. Davison, “Feedback stability under simultaneous gap metric 
uncertainties in plant and controller,” Systems Control Letters, vol. 18–1, pp. 
9–22, 1992.

Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD 
dissertation, Department of Engineering, University of Cambridge, 1993.

Zames, G., and El-Sakkary, “Unstable systems and feedback: The gap metric,” 
Proceedings of the Allerton Conference, pp. 380–385, Oct., 1980.

See Also dhfnorm, emargin, hinfnorm, ncfsyn, mu
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8genmuPurpose Compute upper bounds for the mixed (real and complex) generalized 
structured singular value (referred to as generalized mixed µ) of a VARYING/
CONSTANT matrix

Syntax [bnd,dvec,gvec,qmat] = genmu(M,C,blk);

Description Generalized µ allows us to put additional constraints on the directions that I – 
M∆ becomes singular. Given a matrix M ∈ Cn×n, and C ∈ Cm×n, find the 
smallest ∆ ∈ ∆ (described by blk) such that

is not full column rank. Specifically, define

This quantity can be bounded above, using standard µ ideas. If there exists a 
matrix Q such that

µ∆(M + QC) < β 

then µ∆(M,C) < β. Hence,

It is possible to compute the optimal matrix Q which minimizes the standard µ 
upper bound for µ∆(M + QC). The optimization problem can be reformulated 
into an affine matrix inequality, [PacZPB], and solved with a combination of 
heuristics and general purpose AMI solvers. This is how genmu computes the 
upper bound µ∆(M,C).

The upper bound for µ∆(M,C) is returned in bnd. The scaling matrices D and G 
associated with the upper bound are in packed format, in the matrics dvec and 
gvec, and can be unwrapped with muunwrap. The Q matrix which mimimizes 

I ∆M–

C

µ∆ M C,( ) := 1

min σ ∆( ) : δ ∈ ∆ rank I ∆M–

C
, n<

 
 
 

-------------------------------------------------------------------------------------------------------

µ∆ M C,( ) min µ∆ M QC+( )
Q Cn m×∈
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the bound is returned in qmat. If either M or C are VARYING matrices, then 
the bound is computed at each value of the independent variable, and the 
output matrices (bnd, dvec, gvec and qmat) are also VARYING matrices.

Reference Pachard, A., K. Zhou, P. Pandey, and G. Becker, “A collection of robust control 
problems leading to LMI’s,” 30th IEEE Conference on Decision and Control, pp. 
1245–1250, Brighton, UK, 1991.

See Also cmmusyn, mu
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8getiv, sortiv, tackonPurpose Return, sort, or append the independent variable values of a VARYING 
matrix

Syntax [indv,err] = getiv(mat) 
getiv(mat) 
[out,err] = sortiv(mat,sortflg,nored,epp) 
out = tackon(mat1,mat2)

Description getiv returns the independent variable values of the VARYING matrix mat. If 
the input matrix mat is a VARYING matrix, the independent variable is 
returned as a column vector, indv, and the output err is set to 0. If mat is not 
a VARYING matrix, then indv is set to empty, and err is set to 1.

sortiv will reorder the independent variable and associated VARYING matrix 
to be monotonically increasing or decreasing. The optional sortflg is set to 0 
(default) for monotonically increasing sorting or nonzero for monotonically 
decreasing sorting. sortiv can be used in conjunction with tackon to mesh 
together two different VARYING matrices. The optional third input argument, 
nored, is set to 0 (default) which does not reduce the number of independent 
variables even if there are repeated ones. Setting nored to a nonzero value 
causes repeated independent variables to be collapsed down if their 
corresponding matrices are the same. If they are not, an error message is 
displayed and only the first independent variable and corresponding matrix is 
kept. The output argument err, which is nominally 0, is set to 1 if an error 
message is displayed. The optional fourth input argument, epp, is a vector used 
for checking closeness of two variables. If two independent variables are within 
epp(1), and the norm of the difference between the two matrices at these points 
is within epp(2), sortiv collapses these two independent variable values down 
to one. If the two independent variables are within epp(1), and the norm 
condition is not satisfied, an error message is displayed and out is set to the 
null matrix. When nored is nonzero, the default value for epp is [1e – 9;1e – 9].

tackon strings together two VARYING matrices placing mat1 on top of mat2. 
mat1 and mat2 must have the same row and column dimensions.
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Examples The frequency response VARYING matrix from the frsp example is a 
two-input/two-output matrix containing 30 points. These independent 
variables vary from 0.1 rad/sec to 100 rad/sec.

minfo(sysg)
varying: 30 pts2 rows2 cols
seeiv(sysg)

1.000e-01    1.269e-01    1.610e-01    2.043e-01    2.593e-01
3.290e-01    4.175e-01    5.298e-01    6.723e-01    8.532e-01
1.083e+00    1.374e+00    1.743e+00    2.212e+00    2.807e+00
3.562e+00    4.520e+00    5.736e+00    7.279e+00    9.237e+00
1.172e+01    1.487e+01    1.887e+01    2.395e+01    3.039e+01
3.857e+01    4.894e+01    6.210e+01    7.880e+01    1.000e+02

Typing getiv without any arguments outputs a brief description of its calling 
sequence. All µ-Tools commands have this feature. The xtract command 
selects the independent variables between 1 and 5 rad/sec and the getiv 
command returns these independent variables from sysg and stores them in 
indv.

getiv
usage: [indv,err] = getiv(mat)
[indv] = getiv(xtract(sysg,l,5));
indv'
ans =
1.0826    1.3738    1.7433    2.2122    2.8072
3.5622    4.5204

The sortiv command (with an optional second argument) resorts the 
independent variable of the frequency response of sys in decreasing order.

syslg = sortiv (xtract ( sysg ,1 , 5 ) , 1 ) ;
seeiv(syslg)

4.520e+00   3.562e+00   2.807e+00   2.212e+00   1.743e+00
1.374e+00   1.083e+00

Algorithm getiv and sortiv manipulate VARYING matrices.

See Also indvcmp, sort, xtract, xtracti
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8h2norm, hinfnormPurpose Calculate the H2, H∞ norms of a SYSTEM matrix

Syntax out = h2norm(sys) 
out = hinfnorm(sys,tol)

Description h2norm calculates the 2-norm of a stable, strictly proper SYSTEM matrix. The 
output is a scalar, whose value is the 2-norm of the system.

The output from hinfnorm is a 1 × 3 vector, out, which is made up (in order) of 
a lower bound for ||sys||∞, an upper bound for ||sys||∞, and a frequency, ωo, at 
which the lower bound is achieved.

The ||⋅||∞ norm calculation is an iterative process and requires a test to stop. The 
variable tol specifies the tolerance used to calculate the ||sys||∞. The iteration 
stops when

(the current upper bound) ≤ (1 + tol) × (the current lower bound).

The default value of tol is 0.001.

Algorithm The H2 norm of a SYSTEM follows from the solution to the Lyapunov equation.

AX + XA′ + BB′ = 0,

with ||sys||2 = trace (CXC′).

Calculation of the H∞ norm requires checking for jω axis eigenvalues of a 
Hamiltonian matrix, Hα, which depends on a parameter α. If Hα has no jω axis 
eigenvalues, then the ||⋅||∞ norm of the SYSTEM matrix is less than α. If the 
matrix Hα does have jω axis eigenvalues, then these occur at the frequencies 
where the transfer matrix has a singular value (not necessarily the maximum) 
equal to α. By iterating, the value of the ||⋅||∞ norm can be obtained.

out(1) σ(sys j out 3( )⋅( ) ) sys ∞ out(2)≤ ≤=
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Reference Boyd, S., K. Balakrishnan and P. Kabamba, “A bisection method for computing 
the H∞ norm of a transfer matrix and related problems,” Math Control Signals 
and Systems, 2(3), pp. 207–219, 1989.

Boyd, S., and K. Balakrishnan, “A regularity result for the singular values of a 
transfer matrix and a quadratically convergent algorithm for computing its H∞ 
norm,” Systems and Control Letters, vol. 15–1, 1990.

Bruinsma, O., and M. Steinbuch, “A fast algorithm to compute theH∞ norm of 
a transfer function matrix,” Systems and Control Letters, vol. 14, pp. 287–293, 
1990.

See Also hinfsyn, h2syn, ric_eig, ric_schr
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8h2synPurpose Compute the optimal H2 controller given a SYSTEM interconnection matrix

Syntax [k,g,norms,kfi,gfi,hamx,hamy] =h2syn(p,nmeas,ncon,ricmethod)

Description h2syn calculates the H2 optimal controller k and the closed-loop system g for 
the linear fractional interconnection structure p. nmeas and ncon are the 
dimensions of the measurement outputs from p and the controller inputs to p. 
The optional fourth argument, ricmethod, determines the method used to solve 
the Riccati equations. The interconnection structure, p, is defined by

Input arguments:

Output arguments:

p SYSTEM interconnection structure matrix 

nmeas number of measurements output to controller

ncon number of control inputs

ricmethd   1 Eigenvalue decomposition with balancing
–1 Eigenvalue decomposition with no balancing
  2 Schur decomposition with balancing. (default)
–2 Schur decomposition with no balancing.

k H2 optimal controller

g closed-loop system with optimal controller

norms norms of four different quantities, full information control cost 
(FI), output estimation cost (OEF), disturbance feedforward cost 
(DFL) and full control cost (FC), norms = [FI OEF DFL FC];

kfi full information/state feedback control law

gfi full information/state feedback closed-loop system

p

A B1 B2

C1 D11 D12

C2 D21 D22

=
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The equations and corresponding nomenclature are taken from the Doyle, et 
al., 1989, reference. The full information cost is given by the 

equation .  The output estimation cost is given 

by , where . The disturbance 

feedforward cost is , where L2 is defined by  

and the full control cost is given by . X2 and Y2 are the 

solutions to the X and Y Riccati equations, respectively.

The H2 solution provides an upper bound on γ for use in the hinfsyn program.

Examples Design an H2 optimal controller for a system matrix, himat_icn, with two 
sensor measurements (nmeas), two error signals, two actuator inputs (ncont), 
and eight states. himat_icn differs from the SYSTEM interconnection 
structure himat_ic by the fact that the D11 term of himat_ic is set to be zero. 
The Schur decompostion method, ricmethd = 2, will be used for solution of the 
Riccati equations. The program outputs the minimum eigenvalue of X2 and Y2 
during the computation.

nmeas = 2; 
ncont = 2; 
ricmethd = 2; 
minfo(himat_icn)
system:8 states6 outputs6 inputs
[k,g] = h2syn(himat_icn,nmeas,ncont,ricmethd);
minimum eigenvalue of X2: 2.260000e-02
minimum eigenvalue of Y2: 2.251670e-02

hamx H2 Hamiltonian matrix

hamy H2 Hamiltonian matrix

trace B1
′ X2B1( )( )

1
2
---

trace F2Y2F2
′( )( )

1
2
---

F2 =: B2
′ X2 D12

′ C1+( )–

trace L2
′ X2L2( )( )

1
2
---

Y2C2
′ B1D21

′
+( )–

trace C1Y2C1
′( )( )

1
2
---
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The H∞ and H2 norm of the resulting closed-loop system g can be calculated via 
the commands hinfnorm and h2norm.

hinfnorm(g)
norm between 2.787 and 2.79
achieved near 29.9
h2norm(g)
1.594e+01

Algorithm h2syn is an M-file in µ-Tools that uses the formulae described in the Doyle, et 
al., 1989, reference for solution to the optimal H2 control design problem. A 
Hamiltonian is formed and solved via a Riccati equation (ric_eig and 
ric_schr). The D matrix associated with the input disturbances and output 
errors is restricted to be zero.

Subroutines called. ric_eig, ric_schr, csord, and cgivens.

Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers 
that satisfy an H∞ norm bound and relations to risk sensitivity,” Systems and 
Control Letters, 1988. vol. 11, pp. 167–172, August 1989.

See Also hinfsyn, hinffi, h2norm, hinfnorm, ric_eig, ric_schr
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8hinffiPurpose Compute H∞ full-information controller for a SYSTEM interconnection matrix

Syntax [k,g,gfin,ax,hamx] = 
hinffi(p,ncon,gmin,gmax,tol,ricmethd,epr,epp)

Description hinffi calculates an H∞ full information controller that achieves the infinity 
norm gfin for the interconnection structure p. The controller, k, stablizes the 
SYSTEM matrix p and is constant gain. The system p is partitioned

where B1 are the disturbance inputs, B2 are the control inputs, and C1 are the 
errors to be kept small. B2 has the column size ncon. Within the hinffi 
program, the SYSTEM matrix p is augmented with state and disturbance 
measurements; i.e., the identity matrix with size equal to the number of states 
of p and the identity matrix with size equal to the number of disturbances. Be 
careful when closing the loop with the full information controller since the 
extra measurements are only augmented inside the command hinffi. The 
internal system used for control design is

The controller is returned in k and the closed-loop system is returned in g. The 
program provides a γ iteration using the bisection method. Given a high and 
low value of γ, gmax and gmin, the bisection method is used to iterate on the 
value of γ in an effort to approach the optimal full information H∞ control 
design. If gmax = gmin, only one γ value is tested. The stopping criteria for the 
bisection algorithm requires the relative difference between the last γ value 
that failed and the last γ value that passed be less than tol. You can select 
either the eigenvalue or Schur method with or without balancing for solving 

p
A B1 B2

C1 D11 D12

=

A B1 B2

C1 D11 D12

I
0

0
I

0
0
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the Riccati equations. The eigenvalue method is faster but can have numerical 
problems, while the Schur method is slower but generally more reliable.

The algorithm employed requires tests to determine whether a solution exists 
for a given γ value. epr is used as a measure of when the Hamiltonian matrix 
has imaginary eigenvalues and epp is used to determine whether the Riccati 
solution is positive semi-definite. The selection of epr and epp should be based 
on your knowledge of the numerical conditioning of the interconnection 
structure p. The conditions checked for the existence of a solution are

• H Hamiltonian matrix must have no jω-axis eigenvalues 

• the stabilizing solution, X∞ , of the associated Riccati equation must exist, 
and be must be positive, semi-definite.

Input arguments:

p SYSTEM interconnection structure matrix 

ncon number of controller outputs

gmin lower bound on γ

gmax upper bound on γ

tol relative difference between final γ values, iteration stopping 
criteria

ricmethd 1 Eigenvalue decomposition with balancing. 
–1 Eigenvalue decomposition with no balancing
2 Schur decomposition with balancing (default)

–2 Schur decomposition with no balancing

epr measure of when a real eigenvalue of the Hamiltonian matrix 
is zero (default epr = 1e–10, optional)

epp positive definite determination of the X∞ solution (default 
epp = 1e–6, optional)
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Output arguments:

Note that the outputs ax, ay, hamx, and hamy may correspond to scaled or 
balanced data. The following assumptions are made in the implementation of 
the hinfsyn algorithm and must be satisfied.

(i) (A,B2) is stabilizable 
(ii)  D12 is full column rank 

(iii)  has full column rank for all ω.

where ω denotes the frequency variable. 

On return, there must be no jω-axis eigenvalues associated with the H 
Hamiltonian matrices and the eigenvalues of the Riccati solution, X∞, must all 
be ≥ 0, for the closed-loop system to be stable and to have an H∞ norm less than 
γ. The bisection algorithm iterates on the value of γ to approach the optimal H∞ 
full information controller. 

The hinffi program outputs several variables, which can be checked to ensure 
that the above conditions are being met. For each γ value the minimum 
magnitude, real part of the eigenvalues of the H Hamiltonian matrices is 
displayed along with the minimum eigenvalue of X∞, which is the solution to 
the Riccati equation. A # sign is placed to the right of the condition that failed 
in the printout.

Examples Given an interconnection structure sys with one control input, it is desired to 
synthesize a full information controller. The upper bound on γ is 1.0 and the 
lower bound is specified as 0.1. A tolerance of 0.02 is selected for the stopping 

k H∞ full information controller

g closed-loop system with H∞ full information controller 

gfin final γ achieved

ax  Riccati solution as a VARYING matrix with independent 
variable γ 

hamx Hamiltonian matrix as a VARYING matrix with independent 
variable γ 

A jωI– B2

C1 D12
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condition for the γ iteration and the Schur method is used to solve the Riccati 
equations. The command hinffi outputs the display shown for each value of γ. 
The final γ value achieved is 0.2547.

ncont = 1;% number of control inputs 
gmin = .1;% minimum gamma value to be tested 
gmax = 1;% maximum gamma value to be tested 
tol = .02;% tolerance on the gamma stopping value 
ricmethd = 2;% Riccati solution via the Schur method 
seesys(p)% plant interconnection structure

p = 

3    1  |   4
0    0  |   1
-------------
1    0  |   0

[k,g,gf,ax,hx] = hinffi(p,1,.1,1,.02,2);
Test bounds:0.1000< gamma<= 1.0000

gamma       ham_eig       x_eig         pass/fail
1.000       4.90e+00      5.27e-01      pass
0.550       4.66e+00      6.03e-01      pass
0.325       3.94e+00      1.06e+00      pass
0.213       1.69e+00     -7.63e-01#     fail
0.269       3.34e+00      2.94e+00      pass
0.241       2.78e+00     -4.55e+00#     fail
0.255       3.10e+00      1.04e+01      pass

Gamma value achieved:0.2547

Algorithm hinffi uses the formulas similar to the ones described in the Glover and Doyle, 
1988 paper for solution to the H∞ control design problem. See the hinfsyn 
command for more information.

Subroutines called. hinffi_t, hinffi_p, hinffi_c, and hinffi_g 
hinffi_g calls: ric_eig, ric_schr, csord, and cgivens 
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Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers 
that satisfy an H∞ norm bound and relations to risk sensitivity,” Systems and 
Control Letters, vol. 11, pp. 167–172, 1988.

See Also h2syn, h2norm, hinfsyn, hinfsyne, hinfnorm, ric_eig, ric_schr
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8hinfsynPurpose Compute an H∞ controller for a SYSTEM interconnection matrix

Syntax [k,g,gfin,ax,ay,hamx,hamy] = 
hinfsyn(p,nmeas,ncon,gmin,gmax,tol,ricmethd,epr,epp)

Description hinfsyn calculates an H∞ controller, which achieves the infinity norm gfin for 
the interconnection structure p. The controller, k, stabilizes the SYSTEM 
matrix p and has the same number of states as p. The SYSTEM p is partitioned

where B1are the disturbance inputs, B2 are the control inputs, C1 are the errors 
to be kept small, and C2 are the output measurements provided to the 
controller. B2 has column size (ncon) and C2 has row size (nmeas).

The closed-loop system is returned in g. The program provides a γ iteration 
using the bisection method. Given a high and low value of γ, gmax and gmin, the 
bisection method is used to iterate on the value of γ in an effort to approach the 
optimal H∞ control design. If the value of gmax is equal to gmin, only one γ value 
is tested. The stopping criteria for the bisection algorithm requires the relative 
difference between the last γ value that failed and the last γ value that passed 
be less than tol. You can select either the eigenvalue or Schur method the 
Riccati equations. The eigenvalue method is faster but can have numerical 
problems, while the Schur method is slower but generally more reliable.

The algorithm employed requires tests to determine whether a solution exists 
for a given γ value. epr is used as a measure of when the Hamiltonian matrix 
has imaginary eigenvalues and epp is used to determine whether the Riccati 
solutions are positive semi-definite. The conditions checked for the existence of 
a solution are:

• H and J Hamiltionian matrices (which are formed from the state-space data 
of P and the γ level) must have no imaginary-axis eigenvalues. 

• the stabilizing Ricatti solutions X∞ and Y∞ associated with the Hamiltionian 
matrices must exist and be positive, semi-definite. 

• spectral radius of (X∞,Y∞) must be less than or equal to γ2.

p

A B1 B2

C1 D11 D12

C2 D21 D22

=
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The selection of epr and epp should be based on your knowledge of the 
numerical conditioning of the interconnection structure p. The following 
assumptions are made in the implementation of the hinfsyn algorithm and 
must be satisfied.

(i) (A,B2) is stabilizable and (C2,A) detectable.

(ii) D12 and D21 have full rank.

(iii)  has full column rank for all ω ∈ R.

(iv)  has full row rank for all ω ∈ R.

Inputs arguments:

p SYSTEM interconnection structure matrix

nmeas number of measurements output to controller

ncon number of control inputs

gmin lower bound on γ

gmax upper bound on γ

tol relative difference between final γ values

ricmethod 1 Eigenvalue decomposition with balancing 
2 Schur decomposition with balancing (default) 

–2 Schur decomposition with no balancing

epr measure of when a real part of an eigenvalue of the 
Hamiltonian matrix is zero (default epr = 1e–10)

epp positive definite determination of the X∞ and Y∞ solution 
(default epp = 1e–6)

A jωI– B2

C1 D12

A jωI– B1

C2 D21
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Output arguments:

Note that the outputs ax, ay, hamx, and hamy correspond to scaled or balanced 
data.

The hinfsyn program displays several variables, which can be checked to 
ensure that the above conditions are being satisfied. For each γ value being 
tested, the minimum magnitude, real part of the eigenvalues of the X and Y 
Hamiltonian matrices are displayed along with the minimum eigenvalue of X∞ 
and Y∞, which are the solutions to the X and Y Riccati equations, respectively. 
The maximum eigenvalue of X∞Y∞, scaled by γ–2,is also displayed. A # sign is 
placed to the right of the condition that failed in the printout.

Note  When a Hamiltonian has repeated eigenvalues, solving the Riccati 
equation via the eigenvalue method (ric_eig) may have problems. This is due 
to the MATLAB command eig incorrectly selecting the eigenvectors 
associated with the repeated roots.

k H∞ (sub) optimal controller

g closed-loop system with H∞ controller

gfin final γ achieved

ax X∞ Riccati solution as a VARYING matrix with independent 
variable γ 

ay Y∞ Riccati solution as a VARYING matrix with independent 
variable γ

hamx H∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ

hamy J∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ
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Examples This example is taken from the “HIMAT Robust Performance Design Example” 
section in Chapter 7. himat_ic contains the open-loop interconnection 
structure. Design an H∞ (sub)optimal controller for the SYSTEM matrix, 
himat_ic, with two sensor measurements, two error signals, two actuator 
inputs, two disturbances, and eight states. The range of γ is selected to be 
between 1.0 and 10.0 with a tolerance, tol, on the relative closeness of the final 
γ solution of 0.1. The Schur decompostion method, ric_schr, is used for 
solution of the Riccati equations. The program outputs at each iteration the 
current γ value being tested, and eigenvalue information about the H and J 
Hamiltonian matrices and X∞ and Y∞ Riccati solutions. At the end of each 
iteration a (p) denoting the tested γ value passed or an (f) denoting a failure is 
displayed. Upon finishing, hinfsyn prints out the γ value achieved.

nmeas = 2;% number of sensor measurements 
ncont = 2;% number of control inputs 
gmin = 1;% minimum gamma value to be tested 
gmax = 10;% maximum gamma value to be tested 
tol = .1;% tolerance on the gamma stopping value 
ric = 2;% Riccati equation solved via the Schur method 
minfo(himat_ic)% SYSTEM interconnection structure
system: 8 states6 outputs6 inputs

[k,g] = hinfsyn(himat_ic,nmeas,ncon,gmin,gmax,tol,ric);
Test bounds: 1.0000 < gamma <=10.0000

gamma   hamx_eig   xinf_eig  hamy_eig  yinf_eig  nrho_xy  p/f
10.000  2.3e-02    2.1e-10   2.3e-02  -3.7e-11   0.022     p
5.500   2.3e-02    2.1e-10   2.3e-02  -0.0e+00   0.075     p
3.250   2.3e-02    2.2e-10   2.3e-02  -0.0e+00   0.222     p
2.125   2.3e-02    2.2e-10   2.3e-02  -0.0e+00   0.564     p
1.562   2.3e-02    2.4e-10   2.3e-02  -0.0e+00   1.198#    f
1.844   2.3e-02    2.3e-10   2.3e-02  -0.0e+00   0.789     p
1.703   2.3e-02    2.3e-10   2.3e-02  -2.1e-11   0.959     p
1.633   2.3e-02    2.3e-10   2.3e-02  -0.0e+00   1.068#    f

Gamma value achieved:1.7031
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Algorithm hinfsyn uses the formulae described in the Glover and Doyle, 1988, paper for 
solution to the optimal H∞ control design problem. There are a number of 
research issues that need to be addressed for the “best” solution of the Riccati 
equations but only two of the standard methods are included.

Subroutines called. hinf_st, hinf_sp, hinf_c, and hinf_gam
hinf_gam calls: ric_eig, ric_schr, csord, cgivens 

Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers 
that satisfy an H∞norm bound and relations to risk sensitivity,” Systems and 
Control Letters, vol. 11, pp. 167–172, 1988.

See Also hinffi, hinfnorm, hinfsyne, h2syn, h2norm, ric_eig, ric_schr
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8hinfsynePurpose Compute an H∞ controller for a SYSTEM interconnection matrix that 
minimizes the entropy integral at a specific frequency

Syntax [k,g,gfin,ax,ay,hamx,hamy] = hinfsyne(p,nmeas,ncon,... 
gmin,gmax,tol,s0,quiet,ricmethd,epr,epp)

Description hinfsyne is a variation of hinfsyn and calculates an H∞ controller that 
achieves the infinity norm gfin for the interconnection structure p. The 
controller, k, stablizes the SYSTEM matrix p and has the same number of 
states as p. Of the controllers achieving this norm bound, k is chosen to 
minimize an entropy integral relating to the point s0; i.e.,

where g is the closed-loop transfer function. In addition, the amount of printing 
on the screen can be controlled.

Input arguments:

p SYSTEM interconnection structure matrix

nmeas number of measurements output to controller

ncon number of control inputs

gmin lower bound on γ

gmax upper bound on γ

tol relative difference between final γ values

s0 point at which entropy is evaluated (default ∞)

quiet controls printing on the screen
1 no printing
1 header not printed

–1 full printing (default)

ricmethod 1 Eigenvalue decomposition with balancing 
–1 Eigenvalue decomposition with no balancing
2 Schur decomposition with balancing (default) 

–2 Schur decomposition with no balancing

I gfin
2

2π
---------------– ln

∞–

∞∫ det I γ 2–
g jω( )′g jω( )–( ) s0

2

s0
2 ω2

+
----------------------- dω=
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Output arguments:

Note that the outputs ax, ay, hamx, and hamy correspond to scaled or balanced 
data.

The hinfsyne program outputs several variables, which can be checked to 
ensure that the above conditions are being met. For each γ value the minimum 
magnitude, real part of the eigenvalues of the X Hamiltonian matrices is 
displayed along with the minimum eigenvalue of X∞, which is the solution to 
the X Riccati equation. A # sign is placed to the right of the condition that failed 
in the printout. This additional information can aid you in the control design 
process.

epr measure of when a real part of an eigenvalue of the 
Hamiltonian matrix is zero (default epr = 1e–10)

epp positive definite determination of the X∞ and Y∞ solution 
(default epp = 1e–6)

k H∞ (sub) optimal controller

g closed-loop system with H∞ controller

gfin final γ value achieved

ax X∞ Riccati solution as a VARYING matrix with independent 
variable γ 

ay Y∞ Riccati solution as a VARYING matrix with independent 
variable γ

hamx H∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ

hamy J∞ Hamiltonian matrix as a VARYING matrix with 
independent variable γ
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Algorithm hinfsyne uses the formulas similar to the ones described in the Glover and 
Doyle paper for solution to the H∞ control design problem. See the hinfsyn 
command for more information.

Subroutines called. hinf_st, hinf_gam, hinfe_c, hinf_gam calls: ric_eig, 
ric_schr, csord, and cgivens 

Reference Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions 
to standard H2 and H∞ control problems,” IEEE Transactions on Automatic 
Control, vol. 34, no. 8, pp. 831–847, August 1989.

Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers 
that satisfy an H∞norm bound and relations to risk sensitivity,” Systems and 
Control Letters, vol. 11, pp. 167–172, 1988.

See Also dhfsyn, hinfsyn, hinffi, hinfnorm, h2syn, h2norm, ric_eig, ric_schr, 
sdhfsyn
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8indvcmpPurpose Compare the independent variable data of two VARYING matrices

Syntax code = indvcmp(mat1,mat2,errcrit) 
indvcmp(mat1,mat2,errcrit)

Description indvcmp compares the data for two VARYING matrices. If the two sets of 
independent variables are within a specified tolerance of one another, then the 
VARYING matrices are assumed to have identical independent variables, and 
the VARYING matrices can be combined (i.e., added, subtracted, multiplied, 
etc.). The results are displayed if an output argument is not provided.

Input arguments:

Output arguments:

Examples Compare the two frequency response matrices, mat has its independent 
variable at 0.01 and 0.1 and mat2 has its independent variable at 0.011 and 
0.1. Given the default comparison criteria, the independent variable is 
different. Changing the tolerance leads to the command checking different 
indvcmp variations in the independent variable.

mat1, mat2= matrices to be compared

errcrit= 1 x 2 optional matrix containing the relative error and 
absolute error bounds. The relative error is used to test the 
error in independent variables whose magnitude is greater 
than 1e-9, while the absolute error bound used for smaller 
independent variable values. Default values are 1e-6, and 
1e-13, respectively.

code=0
code=1
code=2
code=3

independent variable data is different
independent variable data is identical
different number of points
at least one matrix isn’t a VARYING matrix
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see(mat)

2 rows   3 columns
indep variable   0.01
1   2   3
4   5   6
indep variable   0.1
 7    8    9
10   11   12

see(mat2)

2 rows   3 columns
indep variable   0.011
10   20   30
40   50   60
indep variable   0.1
 70    80    90
100   110   120

indvcmp(mat,mat2)

varying data is DIFFERENT
code = indvcmp(mat,mat2)

code =
0

Changing the relative and absolute error bounds in indvcmp leads these two 
independent variables to be deemed the same.

indvcmp(mat,mat2,[1 1])
varying data is the same 

Algorithm indvcmp uses standard MATLAB commands.

See Also getiv, sortiv, vunpck, xtract, xtracti 
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8madd, msubPurpose Add and subtract CONSTANT, SYSTEM, and VARYING matrices

Syntax out = madd(mat1,mat2,,matN) 
out = msub(mat1,mat2,,matN)

Description madd (msub) allows the addition or subtraction of matrices, regardless of their 
type, as long as their dimensions are compatible. CONSTANT, SYSTEM, and 
VARYING matrices can be added to or subtracted from one another based on 
the following table. 

For compatibility, the number of rows and columns of mat1 must equal the 
number of rows and columns of mat2. In the case of SYSTEM matrices, the 
number of inputs and outputs of mat1 must equal the number of inputs and 
outputs of mat2. The same is true for VARYING matrices and in addition, the 
independent variables of the VARYING matrices must be identical. Up to nine 
matrices of compatible dimension can be added or subtracted by including 
them as input arguments.

mat2 CONSTANT SYSTEM VARYING

mat1

CONSTANT yes yes yes 

SYSTEM yes yes no 

VARYING yes no yes
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Pictorial Representationof Functions

Examples Create two SYSTEM matrices p and p1 and a CONSTANT matrix.

a = -10;b = 3;c = 10;d = 0; 
p = pck(a,b,c,d); 
minfo(p)
system: 1 states1 outputs1 inputs
a1 = -2; b1 = 3; c1 = 1; d1 = .1; 
p1 = pck(a1,b1,c1,d1); 
minfo(p1)
seesys(p,'3.2g')

-10  |  3
-----|----  
 10  |  0

seesys(p1,'3.2g')

-2  |  3
----|----  
 1  |  .1
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Adding two SYSTEM matrices returns a SYSTEM matrix with the same 
number of inputs and outputs as p and p1.

out = madd(p,p1); 
seesys(out,'3.2g')

-10   0  |   3
0    -2  |   3
---------|------
10    1  |   .1

minfo(out)
system: 2 states 1 outputs 1 inputs

Adding a SYSTEM matrix and a CONSTANT matrix returns a SYSTEM 
matrix with the CONSTANT term added to the D-term of the state-space 
system.

out = madd(p,a); 
seesys(out,'%3.2g')

-10   |    3
------|-----
 10   |  -10

Subtracting a SYSTEM matrix and a CONSTANT returns a SYSTEM matrix 
with the CONSTANT term added to the D-term of the state-space system.

out = msub(p,a); 
seesys(out,'%3.2g')

-10   |    3
------|-----
 10   |  -10

Algorithm madd and msub call the MATLAB + and – commands consistent with the type of 
matrices.

See Also +, -, mmult, mscl
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8massignPurpose Matrix assignment for VARYING and SYSTEM matrices

Syntax out = massign(matin,rowindex,colindex,data)

Description Performs a matrix assignment like operation on VARYING and SYSTEM 
matrices. It is functionally equivalent to

matin(rowindex,colindex) = data

where rowindex and colindex are vectors specifying the rows and columns (or 
outputs and inputs if matin is a SYSTEM) to be changed.

data must either be a constant or of the same type as matin. The dimensions of 
data must be consistent with the lengths of rowindex and colindex.

Note  When applied to a SYSTEM, the result will almost always be 
nonminimal.

Examples In the first example a VARYING matrix with two independent variables is 
formed with identical (and obvious) data for each matrix.

tl = [11,12,13,14;
21,22,23,24;
31,32,33,34;
41,42,43,44];

vmat = vpck([tl;tl],[0.1,0.2]);

Now make a 2 × 2 data matrix and insert it into the VARYING matrix. 
Changing the order of the row and column indices has the effect of permuting 
the result. This is identical to the constant matrix case.

ri = [1,3];
ci = [4,2];
data = [0.001, 0.002; 0.003, 0.004];
vmatl = massign(vmat,ri,ci,data);
see(vmatl)
4 rows 4 columns
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iv = 0.1

11.0000    0.0020    13.0000    0.0010
21.0000   22.0000    23.0000   24.0000
31.0000    0.0040    33.0000    0.0030
41.0000   42.0000    43.0000   44.0000

iv = 0.2

11.0000    0.0020    13.0000    0.0010
21.0000   22.0000    23.0000   24.0000
31.0000    0.0040    33.0000    0.0030
41.0000   42.0000    43.0000   44.0000

In the following example part of a system is replaced by the massign function. 
The initial system is a diagonal system of first order lags. The 2,2 element is 
replaced by a lightly damped system and the result plotted. Note that the 
modified system is no longer minimal.

a = diag([1,2,-3,-4]);
b = eye(4);
c = diag([1,2,3,4]);
sys = pck(a,b,c);
subsys = nd2sys(1,[1,0.1,1]);
sys = massign(sys,2,2,subsys);
minfo(sys)

system: 10 states 4 outputs 4 inputs

omega = logspace(-1,2,100);
sys_g = frsp(sys,omega);
vplot('liv,lm',sys_g,'-')
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See Also sel
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8mfilterPurpose Generate SYSTEM representations of a Bessel, Butterworth, Chebyshev or RC 
filter

Syntax sys = mfilter(fc,ord,type,psbndr)

Description Calculates, as a SYSTEM, a single-input, single-output analog low-pass filter. 
These filters are often encountered in experimental arrangements and must be 
accounted for in experimental data processing and control design. For more 
sophisticated filters see the Signal Processing Toolbox functions.

The cutoff frequency (Hertz) is fc and the filter order is ord. The string 
variable, type, specifies the type of filter and can be one of the following.

The dc gain of each filter (except even order Chebyshev) is set to unity. The 
argument psbndr specifies the Chebyshev passband ripple (in dB). At the cutoff 
frequency, the magnitude is -psbndr dB. For even order Chebyshev filters the 
DC gain is also -psbndr dB.

The Bessel filters are calculated using the recursive polynomial formula. This 
is poorly conditioned for high order filters (order > 8).

Examples butw = mfilter(2,4,'butterw'); 
cheb = mfilter(4,4,'cheby',0.5); 
rc = mfilter(1,4,'rc'); 
omega = logspace(-1,2,100); 
butw_g = frsp(butw,omega); 
cheb_g = frsp(cheb,omega); 
rc_g = frsp(rc,omega); 
vplot('bode_gl',[.1 100 .001 10],[.1 100 -180 180],...

butw_g,'-',cheb_g,'-',rc_g,'-.')
subplot(211),title('Butterworth, RC Chebyshev Filters')

butterw Butterworth

cheby Chebyshev

bessel Bessel

rc series of resistor/capacitor filters
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8minfoPurpose Provide matrix information

Syntax minfo(matin) 
[systype,rowdata,coldata,pointdata] = minfo(matin)

Description minfo returns information about the data type, and size of the matin. With no 
output assignment, minfo returns text output to the screen. The information is 
determined from the data structure as defined in the “The Data Structures” 
section in Chapter 2.

With output arguments, minfo returns four arguments. The first argument, 
systype, is a string variable that can take one of four values. The 
interpretation of the three additional output arguments is based on the 
variable systype. 

systype == 'vary' matin is a VARYING matrix. pointdata tells how 
many independent variable values there are, 
rowdata is the row dimension of a matrix, and 
coldata is the column dimension

systype == 'syst' matin is a SYSTEM matrix. pointdata is the 
number of states, rowdata is the number of outputs, 
and coldata is the number of inputs.

systype == 'cons' matin is a regular MATLAB matrix, pointdata is set 
to NaN, rowdata is the number of rows, and coldata 
is the number of columns.

systype == 'empt' matin is an empty MATLAB matrix; also pointdata, 
rowdata, and coldata are set to empty.
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Examples minfo identifies the type of matrix being manipulated. Compare the displays 
for a CONSTANT, SYSTEM, and VARYING matrix.

a = rand(2,2);b = rand(2,3);c = rand(1,2); 
minfo(a)
constant: 2 rows 2 cols
sys = pck(a,b,c); 
minfo(sys)
system: 2 states1 outputs3 inputs
sys_g = frsp(sys,[.1 .5 .9 1.4]); 
minfo(sysg)
varying: 4 pts 1 rows 3 cols
4 pts between 0.1 and 0.4
sys = sysrand(2,3,1); 
[mtype,mrows,mcols,mnum] = minfo(sys); 
mtype
mtype =
syst
[mrows,mcols,mnum]
ans =

1 3 2

See Also pck, pss2sys, sys2pss, unpck, vpck, vunpck
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8minv, vinvPurpose Calculate the inverse of CONSTANT, SYSTEM, and VARYING matrices. (The 
matrices must be square.)

Syntax out = minv(mat) 
out = vinv(mat)

Description minv calculates the inverse of the input matrix. For VARYING matrices, minv 
returns a VARYING matrix with the inverse of each independent variable 
matrix. For SYSTEM matrices, the inverse is defined as

vinv is the same command as minv, but works only on CONSTANT and 
VARYING matrices.

Examples Determine the inverse of a SYSTEM matrix and a VARYING matrix.

sys = pck(-2,3,1,.1); 
omega = [1 10]; 
sysg = frsp(sys,omega); 
sysi = minv(sys); 
seesys(sysi)

-3.2e+01  |   -3.0e+01
----------|-----------
1.0e+01   |    1.0e+01

sysig = frsp(sysi,omega); 
see(sbs(sysg,sysig,minv(sysig)))
1 row   3 columns
iv =
1.3000 - 0.6000i   0.6341 + 0.2927i   1.3000 - 0.6000i
iv = 10
0.1577 - 0.2885i   1.4591 + 2.6690i   0.1577 - 0.2885i

mat A B
C D

,= out mat( ) 1– A BD 1– C– BD 1– C–

D 1– C D 1–
= =
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Algorithm minv and vinv call the MATLAB inv command.

See Also inv, vdet
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8mmultPurpose Multiply CONSTANT, SYSTEM, and VARYING matrices

Syntax out = mmult(mat1,mat2,,matN)

Description mmult allows the multiplication of matrices, mat1 and mat2 regardless of their 
type, provided their dimensions are compatible. CONSTANT, SYSTEM and 
VARYING matrices can be multiplied by one another based on the following 
table.

For compatibility, the number of columns of mat1 must equal the number of 
rows of mat2. In the case of SYSTEM matrices, the number of inputs of mat1 
must equal the number of outputs of mat2. (An alternative term for the 
multiplication of two SYSTEM matrices is cascade.) Similarly restrictions 
apply for VARYING matrices. Up to nine matrices of compatible dimension can 
be multiplied via the same command by including them as input arguments.

Pictorial 
Representation 
of Function

mat2 CONSTANT SYSTEM VARYING

mat1

CONSTANT yes yes yes 

SYSTEM yes yes no 

VARYING yes no yes
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Examples The multiplication (cascade) of two SYSTEM matrices is shown below.

seesys(p1)

-1.0e+01  |  1.0e+00
----------|----------
1.0e+01   |  1.0e+00

minfo(p1)
system:   1 states   1 outputs   1 inputs
seesys(p2)

-3.0e+00  |  2.0e+00
----------|----------
 4.0e+00  |  1.0e-01

minfo(p2)
system:   1 states   1 outputs   1 inputs
out = mmult(p1,p2) 
seesys(out,%5.2g')

-10   4  |  0.1
  0  -3  |  2
---------|------
 10   0  |  0
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Algorithm mmult uses the MATLAB “ * ” command when the multiplication does not 
involve two SYSTEM matrices. The equation for the multiplication of two 
subsystems is given by

See Also *, abv, madd, mscl, msub

sys1
A1 B1

C1 D1

,= sys2
A2 B2

C2 D2

,=

mmult(sys1,sys2)→
A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

=
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8mprintfPurpose Format output of matrix to screen

Syntax mprintf(matin,'format','end of line characters')

Description mprintf displays a matrix in formatted form. The optional 'format' specifies 
the format exactly as in the MATLAB function sprintf. If no 'format' is 
specified the default is '%.1e'. This routine is primarily for use in seesys and 
does not work well for f format when the minimum field width is too small. 
There is no input checking, so you can wreak havoc if you use mprintf 
incorrectly. See sprintf for more details. The optional 'end of line 
characters' is exactly what it says. The default is the newline C escape 
sequence (\n). To get no newline at the end of each line use 
mprintf(matin,'format',[]).

Examples The mprintf command displays any type of matrix. An example of its use for 
SYSTEM and VARYING matrices follows.

mprintf(m)

1.7e+01   8.7e+00   -6.4e+00   -1.3e+01
5.9e-01  -1.4e+01    5.8e+00   -1.3e+01
1.8e+01  -7.0e+00   -3.6e+00    9.8e+00
2.6e+00   1.2e+01   -1.4e+00   -4.5e-01

mprintf(m,'%6.2f ')

16.96    8.72  -6.39   -13.49
0.59   -14.46   5.77   -12.70
17.97   -7.01  -3.60     9.85
2.64    12.46  -1.36    -0.45

mprintf (m, '%3.f ')

17     9   -6    -13
 1   -14    6    -13
18   -7    -4     10
 3    12   -1     -O

See Also fprintf, rifd, see, seesys, sprintf
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8msf, msfbatchPurpose Interactive D-scaling rational fit routine used in µ-synthesis

Syntax [dsysL,dsysR] = msf(Mg,bnds,dvec,sens,blk) 
[dsysL,dsysR] = msfbatch(Mg,bnds,dvec,sens,blk,maxord)

Description msf fits the block diagonal, frequency-dependent matrices DL(ω) and DR(ω) 
(contained in the VARYING matrix dvec, with block structure implied by the 
entries of blk) with rational, stable, minimum-phase  and  such 
that

msf returns the stable, minimum phase system matrices dsysL and dsysR.

Note  Typically, there is no need to call msf directly. The standard use of msf 
is a subroutine within µ-synthesis. The programs dkit and/or dkitgui are 
fully functional µ-synthesis routines.

Input arguments:

Mg is the frequency response upon which the µ calculation was 
performed.

bnds is the upper bound from the µ calculation.

dvec is a frequency varying vector containing the Ds (obtained from 
mu).

sens is the sensitivity of the upper bound in the µ calculation on the 
Ds. The sensitivity sens is a frequency domain weight calculated 
by mu.

blk is the uncertainty block structure. This should correspond with 
the block strcucture used in the µ calculation (and produced bnds, 
dvec and sens).

D̂L s( ) D̂R s( )

maxσ DL ω( )M jω( )DR
1– ω( )[ ] D̂LMD̂R

1–
∞≈
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Output arguments:

msftbatch is a batch version of msf with no user interaction.

See Also dkit, dkitgui, fitmag, fitmaglp, fitsys, genphase, magfit

dsysL is the left (i.e., output) block diagonal scaling matrix. It is a 
SYSTEM matrix (it may be CONSTANT)

dsysR is the right (i.e., input) block diagonal scaling matrix. It is the 
same type as dsysL
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8mscl, sclin, scloutPurpose Scale CONSTANT, SYSTEM and VARYING matrices

Syntax matout = mscl(matin,fac); matout = sclin(matin,inputs,fac); matout 
= sclout(matin,outputs,fac);

Description The mscl command scales the individual elements of a CONSTANT or 
VARYING matrix by the scalar fac. mscl produces a CONSTANT (VARYING) 
matrix, matout, given matin is a CONSTANT (VARYING) matrix, and fac is a 
scalar. When the output matrix, matout, is VARYING, it has the same 
independent variable values as matin, and is equal to matin multiplied by the 
scalar value fac. If matin is a SYSTEM matrix, then mscl produces a SYSTEM 
matrix, matout, in which the A and C matrices of matin are unchanged, and the 
B and D matrices have been scaled by fac. fac must be a scalar.

The command sclin scales the input channels to the matrix matin (which can 
be a CONSTANT, SYSTEM or VARYING matrix) defined by the variable 
inputs. inputs is a vector of integers, which selects the inputs channels 
(columns) to be scaled by fac. The command sclout performs the similar 
scaling on the outputs (or rows). fac can be a scalar, single-input/single-output 
(SISO) SYSTEM or a VARYING, 1 × 1, matrix. If matin and fac are both 
VARYING matrices, they must have the same independent variables to be 
used with sclin and sclout. The following options can be performed using 
sclin and sclout:

• Scale select inputs and outputs of a SYSTEM or CONSTANT (matin) matrix 
by a scalar or a SISO SYSTEM (fac). 

• Scale select inputs and outputs of a VARYING matrix by a scalar. 

• Scale select inputs and outputs of a VARYING matrix by a VARYING 
(matin), 1 × 1, matrix (fac).
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Examples mscl scales the three input, two output VARYING matrix, matin, by –2.5.

minfo(matin)
varying- 2 pts2 rows3 cols
see(matin)
2 rows 3 columns
indep variable0.2

3 13 23
4 14 24

indep variable0.3
4 14 24
5 15 25

matout = mscl(matin,-2.5);
see(matout)
2 rows 3 columns
indep variable0.2

-7.5000 -32.5000-57.5000
-10.0000-35.0000-60.0000

indep variable 0.3
-10.0000-35.0000-60.0000
-12.5000-37.5000-62.5000

Use the sclin command to scale the first input of a SYSTEM matrix by –3.

sys = pck(ones(3,3),2*ones(3,2),3*ones(1,3),4*ones(1,2));
seesys(sys)

1.0e+00    1.0e+00    1.0e+00  |  2.0e+00    2.0e+00
1.0e+00    1.0e+00    1.0e+00  |  2.0e+00    2.0e+00
1.0e+00    1.0e+00    1.0e+00  |  2.0e+00    2.0e+00
------------------------------------------------------
3.0e+00    3.0e+00    3.0e+00  |  4.0e+00    4.0e+00

sysout = sclin(sys,1,-3);
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seesys(sysout)

1.0e+00    1.0e+00    1.0e+00  |   -6.0e+00    2.0e+00
1.0e+00    1.0e+00    1.0e+00  |   -6.0e+00    2.0e+00
1.0e+00    1.0e+00    1.0e+00  |   -6.0e+00    2.0e+00
-------------------------------------------------------
3.0e+00    3.0e+00    3.0e+00  |   -1.2e+01    4.0e+00

The sclout command can be used to scale the first and third outputs 
of a SYSTEM matrix by the first order transfer function 10/(s + 
10).

sys = sysrand(2,3,1);
seesys(sys,'%11.2e)

2.19e-01    6.79e-01  |  9.35e-01
4.70e-02    6.79e-01  |  3.84e-01
----------------------------------
5.19e-01    5.35e-02  |  7.70e-03
8.31e-01    5.30e-01  |  3.83e-01
3.46e-02    6.71e-01  |  6.68e-02

sysout=sclout(sys,[1 3],nd2sys(10,[1 10]));
seesys(sysout,'%11.2e')

-1.00e+01   0.00e+00   -1.64e+00   -1.69e-01 |  -2.43e-02
0.00e+00   -1.00e+01   -1.09e-01   -2.12e+00 |  -2.11e-01
0.00e+00    0.00e+00    2.19e-01    6.79e-01 |   9.35e-01
0.00e+00    0.00e+00    4.70e-0     6.79e-01 |   3.84e-01
---------------------------------------------|------------
-3.16e+00   0.00e+00    0.00e+00    0.00e+00 |   0.00e+00
0.00e+00    0.00e+00    8.31e-01    5.30e-01 |   3.83e-01
0.00e+00   -3.16e+00    0.00e+00    0.00e+00 |   0.00e+00
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matin = vpck([ones(3,2);2*ones(3,2);3*ones(3,2)],[1;2;3]);
seesys(matin)
3 rows      2 columns

iv = 1
l.0e+00     l.0e+00
l.0e+00     1.0e+00
l.0e+00     l.0e+00

iv = 2
2.0e+00     2.0e+00
2.0e+00     2.0e+00
2.0e+00     2.0e+00

iv = 3
3.0e+00     3.0e+00
3.0e+00     3.0e+00
3.0e+00     3.0e+00

fac = vpck([1;2;3],[1;2;3]);
sysout = sclout(matin,l,fac)i
seesys(matin)
3 rows2 columns

iv = 1
l.0e+00     l.0e+00
l.0e+00     l.0e+00
l.0e+00     l.0e+00

iv = 2
4.0e+00      4.0e+00
2.0e+00      2.0e+00
2.0e+00      2.0e+00

iv = 3
9.0e+00      9.0e+00
3.0e+00      3.0e+00
3.0e+00      3.0e+00

See Also *, mmult, scliv, and sel
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8mu, muunwrap, randel, unwrapd, unwrappPurpose Compute upper and lower bounds for the complex and mixed (real and 
complex) structured singular value (referred to as mixed µ) of a VARYING/
CONSTANT matrix

Syntax [bnds,dvec,sens,pvec,gvec] = mu(matin,blk,options);
[dl,dr,gl,gm,gr,pert] = muunwrap(dvec,gvec,pvec,blk);
[dl,dr,gl,gm,gr] = muunwrap(dvec,gvec,blk);
[dl,dr] = muunwrap(dvec,blk);
pert = randel(blk,nrm,opt);
[dl,dr] = unwrapd(dvec,blk);
pert = unwrapp(pvec,blk);

The functions associated with mixed µ are

mu general complex and mixed computation

muunwrap extract block-diagonal D- and G- scalings from row vectors
containing the scalings

randel create random block structured matrix

unwrapd extract block-diagonal D-scalings from row vector
containing the scalings

unwrapp extract block-diagonal perturbation from row vector 
containing the perturbation
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Description Input arguments: 

matin A CONSTANT or VARYING matrix

blk An array that describes the perturbation block structure. Its 
size is nblk × 2, where nblk is the total number of blocks in 
the perturbation structure. The ith row of blk defines the 
dimensions of the ith perturbation block. If blk(i,:) = [-r 
0], then the ith block is an r × r repeated, diagonal real 
scalar perturbation, while if blk(i,:) = [r 0], then the ith 
block is an r × r repeated, diagonal complex scalar 
perturbation, and if is blk(i,:) = [r c], then the ith block 
is an r × c complex full-block perturbation. If blk is omitted, 
the default is all 1 × 1 complex blocks, and results in an 
error if matin is not square.

options An optional character string describing the desired 
computations. It can consist of the following characters:
'l' - compute lower bound using a power iteration
't' - use more iterations in the lower bound
'R' - start power iteration with RANDOM vectors
'Rj' - restart lower bound j times with RANDOM vectors 
where j is an integer between 1 and 9
'u' - compute upper bound using a balanced/LMI technique
'c' - compute upper bound to greater accuracy'C'
'C' - compute tighest upper bound (may be slow)
'f' -  compute a fast but crude upper bound
'r' -  restart computation at EACH independent variable
's' - suppress progress information
'w' - suppress warnings
'L' - compute only the lower bound
'U' - compute only the upper bound
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The default value of options is 'lu', meaning that a lower bound will be 
computed using the power method, Young and Doyle 1990 and Packard et al. 
1988, and an upper bound will be computed, using the balanced/AMI 
technique, Young et al., 1992, for computing the upper bound from Fan et al., 
1991.

Output arguments:

 [dl,dr,gl,gm,gr] = muunwrap(dvec,gvec,blk); 

The upper bound in bnds for a matrix M is a number β > 0 such that there are 
scaling matrices Dl, Dr, Gl, Gm, Gr (see Young et al., 1992, for details) satisfying

sens is a row vector which contains the sensitivity of

with respect to the values in Dl (and Dr). It is calculated in an ad-hoc manner, 
and is mainly used when fitting frequency varying Ds with rational functions 
via the routines in dkit, dkitgui, and autodkit. 

pvec is a row vector containing a perturbation matrix that has the structure 
defined by blk. As with dvec and gvec, pvec is the same data type as matin and 
is stored as a vector. It can be unwrapped into the actual perturbation with the 
command, unwrapp.

bnds A 1 × 2 vector. If matin is VARYING, so is bnds, whereas if 
matin is a CONSTANT matrix, then bnds is CONSTANT. 
The first column of bnds contains an upper bound to mixed 
µ of matin, and the second column contains a lower bound 
to mixed µ.

dvec and gvec Row vectors which contain the D and G scaling matrices 
that have produced the upper bound in bnds. dvec and gvec 
are the same data type as bnds and are stored as vectors to 
save memory. They can be unwrapped into the appropriate 
D and G matrices by using the command, muunwrap:

σ I Gl
2

+( )
1
4
---– DlMDr

1–

β
----------------------- jGm–

 
 
 

I Gr
2

+( )
1
4
---–

 
 
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pert = unwrapp(pvec,blk);

After being unwrapped, the perturbation matrix pert satisfies three 
conditions:

• It has the block structure defined by blk; 

• The maximum singular value of pert is equal to the reciprocal of the lower 
bound in bnds (when the lower bound is not zero); 

• The matrix mmult(matin,pert) has an eigenvalue equal to 1 at each 
independent variable.

Examples Suppose sys is a system matrix with four inputs and four outputs, and that it 
is stable. sys_g is a frequency response of sys.

% ∆ is 4 1 × 1 perturbation blocks 
blk = ones(4,2); 

% Calculate µ on frequency response 
[bnds,dvec,sens,pvec] = mu(sys_g,blk); 

% Unwrap the D scaling matrices 
[dl,dr] = unwrapd(dvec,blk); 

% Generate scaled matrix 
dmdi = mmult(dl,sys_g,minv(dr)); 

% Verify the upper bound 
vplot('liv,m',vnorm(dmdi),sel(bnds,1,1)) 

% Unwrap the perturbation 
actpert = unwrapp(pvec,blk); 

% Check that perturbation is correct structure 
see(xtracti(actpert,1)) 

% Check lower bound and perturbation 
vplot('liv,lm',sel(bnds,1,2),vnorm(actpert)) 
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% Form M∆
mdel = mmult(sys_g,actpert); 

% Verify M∆ has an eigenvalue at 1 
veig(mdel)

Looking at the same frequency response sys_g with a mixed real/complex block 
structure.

% ∆ is 4 1 × 1 perturbation blocks 

% with the first 2 real, and the last 2 complex 
blk = [-1 0; -1 0; 1 0; 1 0]; 

% Calculate mixed µ on frequency response 
[bnds,dvec,sens,pvec,gvec] = mu(sys_g,blk); 

% Unwrap the D and G scaling matrices
[dl,dr,gl,gm,gr] = muunwrap(dvec,gvec,blk); 

% Generate scaled matrix 
dmd = mmult(dl,sys_g,minv(dr)); 
oobdmd = veval('*',dmd,minv(sel(bnds,1,1))); 
oobdmdjg = msub(oobdmd,mscl(gm,j)); 
scall = madd(eye(4),mmult(gl,gl)); 
scalr = madd(eye(4),mmult(gr,gr)); 
scall = veval(,scall,-0.25); 
scalr = veval(”,scalr,-0.25); 
scaledmat = mmult(scall,oobdmdjg,scalr); 

% Verify the upper bound (scaledmat should have norm ≤1)
vplot('liv,m',vnorm(scaledmat)) 

% Unwrap the perturbation 
pert = unwrapp(pvec,blk); 

% Check that perturbation is correct structure 
see(xtracti(pert,1)) 

% Check lower bound and perturbation
vplot('liv,m',sel(bnds,1,2),minv(vnorm(pert))) 
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% Form M∆ 
mdel = mmult(sys_g,pert); 

% Verify M∆ has an eigenvalue at 1 
see(veig(mdel))

For more examples of computing bounds for µ, please refer to the 
“Computational Exercise with the mu Command” and “Computational 
Exercise with the mu Command — Mixed Perturbations” sections in Chapter 
4 as well as the robust multivariable control design examples in Chapters 6 
and 7.

Algorithm Peter Young and Matt Newlin helped write the mu program and supporting 
routines.

The lower-bound power algorithm is from Young and Doyle, 1990, and Packard 
et al. 1988.

The upper-bound is an implementation of the bound from Fan et al., 1991, and 
is described in detail in Young et al., 1992. In the upper bound computation, the 
matrix is first balanced using either a variation of Osborne’s method (Osborne, 
1960) generalized to handle repeated scalar and full blocks, or a Perron 
approach. This generates the standard upper bound for the associated complex 
µ problem. The Perron eigenvector method is based on an idea of Safonov, 
(Safonov, 1982). It gives the exact computation of µ for positive matrices with 
scalar blocks, but is comparable to Osborne on general matrices. Both the 
Perron and Osborne methods have been modified to handle repeated scalar and 
full blocks. Perron is faster for small matrices but has a growth rate of n3, 
compared with less than n2 for Osborne. This is partly due to the MATLAB 
implementation, which greatly favors Perron. The default is to use Perron for 
simple block structures and Osborne for more complicated block structures. A 
sequence of improvements to the upper bound is then made based on various 
equivalent forms of the upper bound. A number of descent techniques are used 
which exploit the structure of the problem, concluding with general purpose 
AMI optimization (Boyd et al.), 1993, to obtain the final answer.
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Reference Boyd, S. and L. El Ghaoui, “Methods of centers for minimizing generalized 
eigenvalues,” Linear Algebra and Its Applications, vol. 188–189, pp. 63–111, 
1993.

Fan, M. A. Tits, and J. Doyle, “Robustness in the presence of mixed parametric 
uncertainty and unmodeled dynamics,” IEEE Transactions on Automatic 
Control, vol. AC–36, pp. 25–38, 1991.

Osborne, E. “On preconditioning of matrices,” Journal of Associated Computer 
Machines, vol. 7, pp. 338–345, 1960.

Packard, A.K., M. Fan and J. Doyle, “A power method for the structured 
singular value,” Proc. of 1988 IEEE Conference on Control and Decision, pp. 
2132–2137, December 1988.

Safonov,  M. “Stability margins for diagonally perturbed multivariable 
feedback systems,” IEEE Proc., vol. 129, Part D, pp. 251–256, 1982.

Young, P.  and J. Doyle, “Computation of with real and complex uncertainties,” 
Proceedings of the 29th IEEE Conference on Decision and Control, pp. 1230–
1235, 1990.

Young, P., M. Newlin, and J. Doyle, “Practical computation of the mixed 
problem,” Proceedings of the American Control Conference, pp. 2190–2194, 
June, 1992.

See Also blknorm, dypert, genmu, norm, vnorm, vrho, vsvd
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8musynfit, musynflp, muftbtchPurpose Interactive D-scaling rational fit routines used in old µ-synthesis routines

Note  These routines are included only for backwards compatibility with 
versions 1.0 and 2.0. They will not be supported in future versions. They 
should not be used by new users of the toolbox. All new routines should be 
based on the new routine, msf, which is described on page ???.

Syntax [dsysL,dsysR] = musynfit(pre_dsysL,dvec,sens,blk,...
nmeas,ncntrl,clpg,upbd,wt) 

[dsysL,dsysR] = musynflp(pre_dsysL,dvec,sens,blk,...
nmeas,ncntrl,clpg,upbd,wt) 

[dsysL,dsysR] = muftbtch(pre_dsysL,dvec,sens,blk,... 
nmeas,ncntrl,dim)

Description musynfit fits the magnitude curve obtained by multiplying the old D frequency 
response (from pre_dsysl) with the dvec data. musynfit returns stable, 
minimum phase system matrices dsysL and dsysR, which can be absorbed into 
the original interconnection structure. Once absorbed, a H∞ design is 
performed with hinfsyn completing another D–K iteration of µ-synthesis.

For the first µ-synthesis iteration, set the variable pre_dsysl to the string 
first. In subsequent iterations, pre_dsysl should be the previous (left) 
rational D-scaling system matrix, dsysL. Essentially, the element-by-element 
magnitudes of the matrices 
mmult(unwrapd(dvec,blk),frsp(pre_dsysL,getiv(dvec))), and 
frsp(dsysL,getiv(dvec)) are equal.

The (optional) variable clpg is the VARYING matrix that produced the dvec, 
sens, and upbd data output from µ. The fitting procedure is interactive 
(musynfit or musynflp), and fits (in magnitude) these scalings with rational, 
stable transfer function matrices, . After fitting the dvec data, plots of 

and 

D̂ s( )

σ Df jω( ) clpg jω( ) Df
1– jω( )⋅ ⋅( )
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are shown in the lower graph window for comparison. At this point, you have 
the option of refitting the D data. If clpg and upbd are not provided, the default 
is to plot the sens variable in the the lower graph.

Note  You are strongly discouraged from calling musynfit and musynflp 
directly and are encouraged to use dkit or dkitgui to perform µ-synthesis 
calculations.

Input arguments:

pre_dsysl is set to the character string 'first' for the first iteration. 
As the iteration proceeds, it should be the previous dsysL.

sens is the sensitivity of the upper bound in the µ calculation on 
the Ds. The sensitivity sens is a frequency domain weight, 
which is obtained from mu.

dvec is a frequency varying row vector containing the Ds (from mu).

  blk is the block structure, same block structure used in mu. 

nmeas is the number of measurements in control problem.

ncntrl is the number of controls in control problem.

clpg is the frequency response upon which the calculation was 
performed (optional).

upbd is the upper bound from the µ calculation (optional).

wt is a weight used to influence the frequency range in which the 
data is to be fit more accurately (optional).

dim is the highest order fit to be used (only used in muftbtch).

σ D̂ jω( ) clpg jω( ) D̂
1–

jω( )⋅ ⋅( )
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Output arguments:

For more detail about the role of hmax and htol, see the reference pages for 
fitmaglp and magfit. Reasonable choices are hmax = .26 and htol = .1.

The musynflp and musynfit commands provide the option of fitting the 
frequency varying D-scale data by hand using the µ-Tools drawmag command. 
You can invoke this option with the string ’drawmag’ in response to the prompt

ENTER ORDER OF CURVE FIT or 'drawmag'

The mouse is used in the plot window to identify the data to be fit with a stable, 
minimum-phase system. See the drawmag command for more information.

Examples musynfit is used within a D–K iteration (µ-synthesis) to fit the D-scales, which 
are output from the mu command. The first step in the D–Kiteration is to design 
an H∞ control law. The closed-loop system is analyzed with mu based on the 
block structure blk defined. The optimal D-scaling output from mu, which are 
real coeeficients, are fit with real, rational, minimum-phase stable transfer 
functions via musynfit. These fitted D-scales are wrapped back around the 
orginal interconnection structure P. After absorbing the D-scales, another D–K 
iteration is performed, starting with the design of an H∞ control law for the 

dsysL is the output (left) block diagonal, SYSTEM scaling.

dsysR is the input (right) block diagonal, SYSTEM scaling (needs to 
be inverted before being absorbed into the interconnection 
structure).

musynflp has the same inputs and outputs and user interaction as 
musynfit but uses a linear programing routine to do the 
fitting. muftbtch is a batch version of musynflp that has no 
user interaction. The extra argument dim is a required 
argument of parameters for the linear program. dim has the 
form [hmax htol nmin nmax] where
•  hmax is a measure of the allowable error in the fit.

• htol is a measure of the accuracy with which the optimiza-
tion is carried out.

• nmin and nmax are the minimum and maximum orders con-
sidered in the problem
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modified plant. This process usually continues until the value of µ doesn’t 
change significantly between control design iterations.

This example is taken from the “HIMAT Robust Performance Design Example” 
section in Chapter 7. himat_ic contains the open-loop interconnection 
structure. It has one multiplicative input perturbation, which is two by two, 
and has two error signals, and two external disturbances. There are two 
measurements, and two control inputs to the system. The block structure for 
the µ-analysis problem is given by blk=[2 2; 2 2].

First step in a D–K iteration is to design an H∞ controller and analyze the 
closed loop system with µ.

mkhic  
omega = logspace(0,4,40); 
blk = [2 2; 2 2]; 
[k1,g1,gf1] = hinfsyn(himat_ic,2,2,0.8,6,0.05,2); 
g1_g = frsp(g1,omega); 
[bnds1,dvec1,sens1,rp1] = mu(g1_g,blk);

The D-scalings output from the µ-analysis problem needs to be fit with real, 
rational, stable, minimum-phase transfer functions. This is done with 
musynfit. The first D-scale is fit with both a first and third-order transfer 
function, with the third order transfer function selected.
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[dsysL1,dsysR1] = musynfit('first',dvec1,sens1,blk,2,2);

ENTER ORDER OF CURVE FIT or 'drawmag' 1
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ENTER NEW ORDER, ’drawmag’, or NEGATIVE NUMBER TO STOP 
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ENTER ORDER OF CURVE FIT or 'drawmag' 3

ENTER ORDER OF CURVE FIT or 'drawmag' -1

Now the fitted D-scales are absorbed into the interconnection structure, 
himat_ic, to generate himat_ic2.

mu_ic1 = mmult(dsysL1,himat_ic,minv(dsysR1));

The modified interconnection structure, mu_ic1, is used in the second iteration 
of µ-synthesis. An H∞ control law is designed for the modified system, and then 
analyzed again using mu.

[k2,g2] = hinfsyn(mu_ic1,2,2,.9,1.3,.04,2); 
g2_g = frsp(g2,omega); 
[bnds2,dvec2,sens2,pvec2] = mu(g2_g,blk);

The new D-scales are fit again using the previous D-scale information.

[dsysL2,dsysR2] = musynfit(dsysL1,dvec2,sens2,blk,2,2);
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The graphs displayed with musynfit for this iteration are not included. Wrap 
the new fitted D-scales around the original plant interconnection structure and 
start D–K iteration again.

mu_ic2 = mmult(dsysL2,himat_ic,minv(dsysR2)); 
[k3,g3] = hinfsyn(mu_ic2,2,2,.9,1.3,.05,2);

musynfit can be called as before with the frequency response of the closed-loop 
system analyzed using mu, g1_g, and the mu upper bound, sel(bnds1,1,1) 
passed. The first D-scale is fit with both a first- and third-order transfer 
function and the first order transfer function selected. As you can see from the 
scaled upper bound plots (the lower graph), the first-order fit does a better job 
minimizing the scaled upper bound.

[dsysL1,dsysR1] = ...
musynfit('first',dvec1,sens1,blk,2,2,gl_g,sel(bnds1,1,1)
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ENTER ORDER OF CURVE FIT or 'drawmag' 3

ENTER ORDER OF CURVE FIT or 'drawmag' 1

ENTER ORDER OF CURVE FIT or 'drawmag' -1
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As before you would aborb the fitted D-scales into the interconnection 
structure, himat_ic, to generate himat_ic2.

Algorithm A frequency response is done on the previous rational D-scaling matrix. This is 
multiplied by the current data in dvec, to produce the frequency varying 
scaling that needs to be fit. The fit is only in magnitude, and the freedom in the 
phase allows the rational function to be defined as stable, and minimum phase. 
musynfit calls fitsys, which calls fitmag, flatten, and genphase. The curve 
fitting is done the fitsys command.

musynflp is an alternative program that uses linear programming to do the fit. 
musynflp fits the data very well within the frequency response window at the 
expense of perhaps large variations outside the data window. This may lead to 
problems in D–K iteration. muftbtch is a batch version of musynflp.

Reference Doyle, J.C., K. Lenz, and A.K. Packard, “Design examples using µ-synthesis: 
Space shuttle lateral axis FCS during reentry,” NATO ASI Series, Modelling, 
Robustness and Sensitivity Reduction in Control Systems, vol. F34 R.F. Curtin, 
Editor, Springer-Verlag, Berlin-Heidelberg, 1987.

See Also drawmag, fitmag, fitmaglp, fitsys, flatten, genphase, invfreqs, magfit, msf
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8ncfsyn, cf2sys, emarginPurpose ncfsyn synthesizes an H∞ controller to robustly stabilize a family of systems 
given by a ball of uncertainty in the normalized coprime factors of the system 
description

cf2sys calculates a SYSTEM/CONSTANT/VARYING matrix from a coprime 
factorization.

emargin calculates the normalized coprime factor/gap metric robust stability 
margin b(P,K) as defined in the “Loop Shaping Using H• Synthesis” section in 
Chapter 3.

Syntax [sysk,emax,sysobs] = ncfsyn(sysgw,factor,opt) 
sysout = cf2sys(sysrcf) 
emarg = emargin(sys_g,sysw,tol)

Description A method of designing controllers is to use a combination of loop shaping and 
robust stabilization as proposed in McFarlane and Glover. The first step is to 
design a pre- and post-compensator W1(s) and W2, so that the gain of 
W2(s)P(s)W1(s) is sufficiently high at frequencies where good disturbance 
attenuation is required and is sufficiently low at frequencies where good robust 
stability is required. The second step is to design a feedback controller, K∞, so 
that

which will also give robust stability of the perturbed weighted plant

where NM–1 = W2PW1is a normalized coprime factorization satisfying 
N(jw)*N(jw) + M(jw)*M(jw) = I. This stability margin is always less than 1 and 
gives a good indication of robust stability to a wide class of unstructured 
perturbations, with values of ε > 0.2 – 0.3 generally satisfactory.

The closed-loop H∞-norm objective has the standard signal gain interpretation. 
Finally it can be shown that the controller, K∞, does not substantially affect the 

1
b W2PW1 K∞,( )
----------------------------------------- := I

K∞
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loop shape in frequencies where the gain of W2PW1 is either high or low, and 
will guarantee satisfactory stability margins in the frequency region of gain 
cross-over. In the regulator set-up, the final controller to be implemented is 
W1K∞W2.

When the option 'ref' is specified, the controller includes an extra set of 
reference inputs as proposed in Vinnicombe, 1993, and should be implemented 

as u = sysk *  where y = sysgw * u and r is a reference input. The 

closed-loop response will then be y = Nr, where N is the numerator of a 
normalized right coprime factor of sysgw.

Input arguments

Output arguments

cf2sys creates a SYSTEM/CONSTANT/VARYING matrix from a coprime 
factorization.

emargin calculates the normalized coprime factor/gap metric robust stability 
margin b(P,K) as defined in the “Loop Shaping Using H• Synthesis” section in 

sysgw the weighted system to be controlled

factor =1 implies that an optimal controller is required.
>1 implies that a suboptimal controller is required achieving a 
performance FACTOR less than optimal.

opt 'ref' the controller includes an extra set of reference input and 
should be implemented as in Figure 3–12 on page 3-? (optional).

sysk H∞ loopshaping controller

emax Stability margin as an indication robustness to unstructured 
perturbations. emax is always less than 1 and values of emax 
greater than 0.3 generally indicate good robustness margins.

sysobs H∞ loopshaping observer controller. This variable is created only 
if factor>1 and opt = 'ref'

y
r
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Chapter 3. The default value for the tolerance tol supplied to the hinfnorm 
computation is 0.001.

Algorithm See the McFarlane and Glover reference for details.

Reference McFarlane, D.C.and K. Glover, Robust Controller Design using Normalised 
Coprime Factor Plant Descriptions, Springer Verlag, Lecture Notes in Control 
and Information Sciences, vol. 138, 1989.

McFarlane, D.C., and K. Glover, “A Loop Shaping Design Procedure using 
Synthesis,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 759–
769, June 1992.

Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD 
dissertation, Department of Engineering, University of Cambridge, 1993.

See Also gap, hinfsyn, hinfnorm, nugap
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8nd2sys, zp2sysPurpose Convert single-input/single-output (SISO) transfer functions to SYSTEM 
matrices

Syntax sys = nd2sys(num,den,gain) 
sys = zp2sy(zeros,poles,gain)

Description nd2sys converts a numerator/denominator (num,den) SISO transfer function 
into a SYSTEM matrix, sys. This function uses the MATLAB command tf2ss 
for the conversion. zp2sys converts zeros and poles of a SISO transfer function 
into a SYSTEM matrix, sys. This function uses the MATLAB command zp2ss 
to do the conversion. An optional argument gain can be supplied to scale the 
transfer function. The default value of gain is 1. The output SYSTEM matrix, 
sys, is balanced with a call to the µ-Tools command sysbal prior to being 
return if the real parts of the poles are all less than zero.

Examples Convert the single-input/single-output transfer function sys1 into a SYSTEM 
matrix.

sys = nd2sys([4 5 1],[7 3 6 2 8]); 
minfo(sys)
system:4 states1 outputs1 inputs
see(sys)
see (sys)

A matrix

-0.4286 -0.8571 -0.2857 -1.1429
1.0000 0 0 0

0 1.0000 0 0
0 0 1.0000 0

sys 4s
2

5s 1+ +

7s
4

3s
3

6s
2

2s 8+ + + +
-----------------------------------------------------------------=
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B matrix
1
0
0
0

C matrix
0    0.5714    0.7143    0.1429

D matrix
0

Note  zp2sys requires the Signal Processing or Control Toolbox.

Algorithm nd2sys and zp2sys realize the transfer functions using the MATLAB 
commands tf2ss and zp2ss.

See Also pss2sys, pck, tf2ss
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8neganglePurpose Calculate the angle of elements of a matrix, which is always between [–2π,0]

Syntax y = negangle(x)

Description negangle returns the phase angles, in radians, of a matrix with complex valued 
elements. The returned value is always in the range 0 to –2π radians.

Examples a = [1+i,1-i];
see(angle(a))

0.7854-0.7854
see(negangle(a))

-5.4978-0.7854

See Also angle



pck, pss2sys, sys2pss, unpck

8-131

8pck, pss2sys, sys2pss, unpckPurpose Convert to and from CONSTANT and SYSTEM matrices

Syntax sys = pss2sys(mat,n) 
sys = pck(A,B,C,D) 
sys = pck(A,B,C) 
[A,B,C,D] = unpck(sys) 
mat = sys2pss(sys)

Description pss2sys translates a regular MATLAB matrix that is in packed form into a 
SYSTEM matrix. mat contains [A B; C D] which describes the individual 
components of a SYSTEM matrix with n being the number of states (size of A). 
sys2pss returns the CONSTANT matrix, mat = [A B; C D], from the input 
SYSTEM matrix sys.

pck takes consistent state-space data and forms a SYSTEM matrix with the 
data structure defined. Consistent state-space data requires a square A matrix, 
a B matrix with the same number of rows as A, a C matrix with the same 
number of columns as A, and a D matrix with same number of columns of B and 
rows of C. If the fourth input argument is omitted, then the D matrix is assumed 
to be identically zero, of appropriate dimensions. unpck is the inverse operation 
of pck, taking a SYSTEM matrix sys and converting it to A, B, C and D 
CONSTANT matrices.

Note that based on the data structure definition, a -Inf in the bottom right 
corner of a matrix denotes a SYSTEM matrix, with the top, right corner 
element of the matrix containing the number of states.
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Examples Create a SYSTEM matrix from MATLAB CONSTANT matrices via pss2sys. 
Define matrices A, B, C, and D as follows.

A = [-1 1; -1 -3]; B =[2 2; 2 2]i C = [3 3]; D = [4 4]
mat = [A B; C D];
sys = pss2sys(mat,2);
minfo(mat)
3 rows4 cols: regular MATLAB matrix
mat =

-1 1 22
-1 -3 22
3 3 44

minfo(sys)
system: 2 states1 outputs2 inputs
seesys(sys)

-1.0e+00     1.0e+00  |  2.0e+00     2.0e+00
-1.0e+00    -3.0e+00  |  2.0e+00     2.0e+00
----------------------|----------------------
 3.0e+00     3.0e+00  |  4.0e+00     4.0e+00

The same SYSTEM matrix can be constructed using the pck command.

sys = pck(A,B,C,D);
minfo(sys)
system: 2 states1 outputs2 inputs
seesys(sys)

-1.0e+00     1.0e+00  |  2.0e+00     2.0e+00
-1.0e+00    -3.0e+00  |  2.0e+00     2.0e+00
----------------------|----------------------
 3.0e+00     3.0e+00  |  4.0e+00     4.0e+00
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Matrices A, B, C, and D can be constructed from sys using unpck.

[A,B,C,D] = unpck(sys); 
A
A = 

-1 1
-1 3

B
B = 

2 2
2 2

C
C = 

3 3
D
D = 

4 4
mat = sys2pss(sys); 
mat
mat =

-1 12 2
-1 -32 2
3 34 4

See Also minfo, nd2sys, vpck, vunpck, zp2sys
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8pkvnorm, vnormPurpose Find the norm or peak norm of a VARYING matrix

Syntax [peak,indv,index] = pkvnorm(matin,p) 
out = (matin) 
out = (matin,p)

Description pkvnorm sweeps through the independent variable, calculating the norm of 
each matrix as specified by the input argument p, following the convention 
from MATLAB’s norm command. The default for p is the largest singular value 
of matin. The three output arguments all pertain to the peak and its location: 
peak value, peak, the independent variable’s value, indv, and the independent 
variable’s index, index.

vnorm is a VARYING matrix version of MATLAB’s norm command. The 
operation of the norm command is identical to vnorm, except that vnorm also 
works on CONSTANT and VARYING matrices, which produces a CONSTANT 
or VARYING output. vnorm returns the matrix out with its norm at each 
independent variable value.

Examples The two-input/two-output VARYING matrix matin has its independent 
variable at 0.2 and 0.6. The vnorm command finds the largest singular value of 
the VARYING matrix at each value of the indepedent variable. pkvnorm 
returns the largest singular value of the VARYING matrix, its independent 
variable value, and the index of the independent variable.

minfo(matin)
varying:2 pts2 rows2 cols
see(matin)
2 rows2 columns
indep variable 0.2
 1.0000      0
 0           0.5000
indep variable 0.6
 4           0
-5           1
nrm = vnorm(matin,2); 
see(nrm)
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1 row    1 column
indep variable 0.2
  1
indep variable 0.6
  6.4510
[peak,indv,index] = pkvnorm(matin); 
peak
peak =
  6.4510
indv
indv =
  0.6000
index
index ==
  2

Algorithm pkvnorm and vnorm call the MATLAB norm command.

See Also norm, vsvd
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8ric_eigPurpose Solution of a Riccati equation via eigenvalue decomposition

Syntax [x1,x2,fail,reig_min] = ric_eig(ham,epp) 
x = x2/x1;

Description ric_eig (along with a call to x=x2/x1) solves the Riccati equation,

A′X + XA + XRX – Q = 0

with the constraint that the matrix A + RX has all of its eigenvalues in open 
left-half plane. The data matrices A, R and Q come from the input Hamiltonian 
matrix, ham, in the form

and it is assumed that R = R′, Q = Q′. 

If ham has no jω axis eigenvalues, then there exists n × n matrices x1 and x2 
such that [x1; x2] spans the n-dimensional stable, invariant subspace of ham. 
If the matrix x1 is indeed invertible, then X := x2 * x1-1 satisfies the Riccati 
equation and results in A + RX being stable. It is the only such matrix with 
these properties.

ric_eig has internal error checking and returns a fail value of 1 if jω axis 
eigenvalues of ham are found. If this occurs, there is no n-dimensional, stable 
invariant subspace, and hence no stabilizing Riccati solution. An eigenvalue is 
considered to be purely imaginary if the magnitude of the real part is less than 
epp. The minimum real part of the eigenvalues is returned in reig_min. epp is 
an optional argument and its default value is 1e – 10.

Note  When a Hamiltonian has repeated eigenvalues, solving the Riccati 
equation via the eigenvalue method may have problems. This is due to the 
MATLAB command eig incorrectly selecting the eigenvectors associated with 
the repeated roots.

ham A R
Q A′–

=
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Algorithm Under the assumption that the Hamiltonian matrix has a full set of 
eigenvectors, the stable-invariant subspace is spanned by the eigenvectors 
associated with the stable eigenvalues. Hence, an eigenvalue-eigenvector 
decomposition can obtain the stable invariant subspace of the Hamiltonian 
matrix, ham. Assuming there are no jω axis eigenvalues, and that there is a full 
set of eigenvectors, the two components, x1 and x2, can be generated by 
choosing the eigenvectors associated with the stable eigenvalues. The ric_eig 
subroutine operates on the assumption that the Jordan form of the 
Hamiltonian is diagonal, and returns the stable invariant subspace, as 
spanned by the eigenvectors, in the two block form described above.

See Also eig, h2syn, hinfsyn, hinffi, ric_schr
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8ric_schrPurpose Solve a Riccati equation via Schur decomposition

Syntax [x1,x2,fail,reig_min] = ric_schr(ham,epp) 
x = x2/x1

Description ric_schr (along with a call to x=x2/x1) solves the Riccati equation,

A′X + XA + XRX – Q = 0

such that A + RX is stable. A real Schur decomposition can obtain the stable 
invariant subspace of the Hamiltonian matrix, ham. The data matrices A, R, 
and Q come from the input Hamiltonian matrix in the form

and it is assumed that and it is assumed that R = R′, Q = Q′. 

If ham has no jω axis eigenvalues, then there exists n × n matrices x1 and x2 
such that [x1; x2] spans the n-dimensional stable, invariant subspace of ham. 
If x1 is invertible, then X := x2 * x1-1 satisfies the Riccati equation and 
results in A + RX being stable. The output flag fail is nominally 0. If there are 
jω-axis eigenvalues, fail is set to 1. If there are an unequal number of positive 
and negative eigenvalues, fail is set to 2, and if both conditions occur, fail = 
3.

Algorithm ric_schr calls csord to produce an ordered complex Schur form, which is 
converted to a real Schur form, and yields a stable, invariant subspace of the 
Hamiltonian. The csord command orders the solution with negative real 
eigenvalues in the top half of the matrix and the positive real eigenvalues on 
the bottom, and returns the stable solution. The input matrix is assumed to be 
a Hamiltonian matrix of size 2n with n stable eigenvalues and n unstable 
eigenvalues. The minimum real part of the eigenvalues is output to reig_min. 
epp is an optional argument and its default value is 1e-10.

See Also csord, h2syn, hinfsyn, hinffi, ric_eig, schur

ham A R
Q A′–

=
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8rifdPurpose Display the real, imaginary, frequency and damping ratios of a CONSTANT 
input vector

Syntax rifd(vec)

Description rifd displays the real, imaginary, frequency, and damping ratios of a 
CONSTANT input vector. The ith frequency is given by the

and its damping ratio is defined as real(sys(i))/ω(i).

Examples Display the poles of the SYSTEM matrix, sys.

sys = pck(rand(4,4),rand(4,2),rand(1,4)); 
rifd(spoles(sys))

    real       imaginary      frequency     damping
-7.6287e-02    0.0000e+00    7.6287e-02    l.0000e+00
 1.0820e–01   –4.6815e–01    4.8049e–01   –2.2519e–01  
 1.0820e–01    4.6815e–01    4.8049e–01   –2.2519e–01
 1.4095e+00    0.0000e+00    1.4095e+00   -l.0000e+00

See Also eig, imag, spoles, real

real(sys(i))
2

imag(sys(i)
2+( )

1
2
---
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8samhldPurpose Create a sample-hold approximation of a continuous system

Syntax discout = samhld(sys,T)

Description samhld applies a sample-hold to the input of the continuous-time systems sys, 
and samples the output, to produce a discrete-time system, discout. The 
sampling time is the same at the input and output, and is specified by T.

Examples Construct the system sys via the nd2sys command and verify that all of its 
poles are in the closed left-half plane. Perform a sample hold of the system for 
a 200 Hz sample rate. All the poles for the discretized system, discout, are 
within the unit disk.

sys = nd2sys([1 2 4 5],[2 7 9 2]); 
spoles(sys)

-1.6114 + 1.0049i
-1.6114 - 1.0049i
-0.2773
discout = samhld (sys ,1 / 2 0 0)
seesys (discout, '%8 .4f ')

0.9826    -0.0223   -0.0050  |  0.0050
o.0050     0.9999   -0.0000  |  0.0000
0.0000     0.0050    1.0000  |  0.0000
-----------------------------|---------
-0.7500    -0.2500   2.0000  |  0.5000

spoles(discout)

0.9920 + 0.0050i
0.9920 - 0.0050i
0.9986

Algorithm Suppose that the continuous-time system has state-space representation

sys A B
C D

.=
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If u(t) is held constant over the interval [kT,(k + 1)T], then over that interval, 
the state evolution is governed by the differential equation

which captures the behavior of the continuous-time system, over one sample 
period, while the input u(t) is held constant.

Let 

Define  as . Then W appears as

Define Adisc := W11, and Bdisc := W12, and define the discretized system as

See Also exp, expm, tustin

x·

u·
A B

0nu n× 0nu n×

x
u

,  x kT( )
u kT( )

xk

uk

,= =

Ã :=
A B

0nu n× 0nu n×

W R
n nu+( ) n nu+( )×

∈ W := eÃT

W
W11 W12

0 I
=

discout
Adisc Bdisc

C D
=
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8sclivPurpose Scale the independent variable values of a VARYING matrix with an affine 
transformation

Syntax vout = scliv(vin,factor,offset)

Description scliv scales the independent variable of a VARYING matrix in the following 
manner. Let indvi and newindvi denote the independent variable’s ith value, 
before and after applying scliv. Then, for each i, they are related as

newindvi = (factor × indvi) + offset

The default value for offset is zero.

Examples Scale the independent value of vin by a factor of 3 and offset it from its original 
value by 0.5.

seeiv(vin)
l.000e+002.000e+003.000e+00 4.000e+00 5.000e+00
vout = scliv(vin,3,0.5)
seeiv(vout)
3.500e+006.500e+009.500e+00 1.250e+01 1.550e+01

See Also getiv, seeiv
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8sdhfnormPurpose sdhfnorm calculates the induced norm of a sampled-data system

Syntax [gaml,gamu]=sdhfsyn(p,k,h,delay,tol)

Description sdhfnorm is concerned with the control of a continuous-time system by a 
discrete-time controller. The continuous-time interconnection structure 
structure, p of type SYSTEM, has state-space realization partitioned as 
follows.

where the continuous-time disturbance inputs enter through B1, the outputs 
from the controller are held constant between sampling instants and enter 
through B2, the continuous-time errors to be kept small correspond to the C1 
partition, and the output measurements that are sampled by the controller 
correspond to the C2 partition. B2 has column size (ncon) and C2 has row size 
(nmeas). Note that the D matrix is assumed to be zero.

sdhfnorm calculates the maximum gain from the L2 norm of the disturbance 
inputs to the L2 norm of the error outputs.

Input arguments:

Output arguments:

p SYSTEM interconnection structure matrix, (continuous-time)

k discrete-time controller

h sampling period

delay number of samples computational delay (default = 0) 
(integer ≥ 0 with default =0)

tol required relative accuracy

p

A B1 B2

C1 0 0

C2 0 0

=

gaml lower bound on the norm

gamu upper bound on the norm
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Examples An illustrative example is given in the “Discrete-Time and Sampled-Data H• 
Control” section in Chapter 3.

Algorithm sdhfnorm uses variations of the formulae described in the Bamieh and Pearson 
paper to obtain an equivalent discrete-time system. (These variations are done 
to improve the numerical conditioning of the algorithms.) A preliminary step is 
to determine whether the norm of the continuous-time system over one 
sampling period without control is less than the given γ-value. This requires a 
search and is, computationally, a relatively expensive step.

Subroutines called. dhfsyn, ham2schr, and compnorm

Reference Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic 
Systems with Applications to Sampled-Data Control,” IEEE Transactions on 
Automatic Control, vol. AC–37, pp. 418-–435, 1992.

See Also dhfsyn, hinfsyne, hinffi, hinfnorm, hinfsyn, h2syn, h2norm, ric_eig, 
ric_schr
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8sdhfsynPurpose sdhfsyn computes an H∞ controller for a sampled-data SYSTEM 
interconnection matrix

Syntax [k,gfin] = sdhfsyn(p,nmeas,ncon,gmin,gmax,tol,h,... 
delay,ricmethd,epr,epp)

Description sdhfsyn is concerned with the control of a continuous-time system by a 
discrete-time controller. The continuous-time interconnection structure 
structure, p of type SYSTEM, has state-space realization partitioned as follows

where the continuous-time disturbance inputs enter through B1, the outputs 
from the controller are held constant between sampling instants and enter 
through B2, the continuous-time errors to be kept small correspond to the C1 
partition, and the output measurements that are sampled by the controller 
correspond to the C2 partition. B2 has column size (ncon) and C2 has row size 
(nmeas). Note that the D matrix is assumed to be zero.

sdhfsyn synthesizes a discrete-time controller to achieve a given norm (if 
possible) or find the minimum possible norm to within some tolerance.

sdhfsyn provides a γ iteration using the bisection method. Given a high and low 
value of γ, gmax and gmin, the bisection method is used to iterate on the value 
of γ in an effort to approach the optimal H∞ control design. If gmax = gmin, only 
one γ value is tested. The stopping criteria for the bisection algorithm requires 
the relative difference between the last γ value that failed and the last γ value 
that passed be less than tol. You can select either the eigenvalue or Schur 
method for solution of the Riccati equations with and without balancing. The 
eigenvalue method is faster but can have numerical problems, while the Schur 
method is slower but generally more reliable.

The algorithm employed calculates an equivalent purely discrete-time problem 
for each value of γ and then calls dhfsyn with γ = 1. The screen printing is then 
derived from the tests performed by dhfsyn.

p

A B1 B2

C1 0 0

C2 0 0

=
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Input arguments

Output arguments

You might design a first controller using the dhfsyn function on the SYSTEM 
(samhld(p,h)), followed by sdhfnorm to determine an upper bound gmax to use 
for the start of this sampled data control design iterative process.

p SYSTEM interconnection structure matrix

nmeas number of measurements output to controller

ncon number of control inputs

gmin lower bound on γ

gmax upper bound on γ

tol relative difference between final γ values

delay number of samples computational delay (default = 0)

h time between samples

ricmethod 1 Eigenvalue decomposition with balancing 
–1 Eigenvalue decomposition with no balancing
2 Schur decomposition with balancing (default) 

–2 Schur decomposition with no balancing

epr measure of when a real part of an eigenvalue of the 
Hamiltonian matrix is zero (default epr = 1e–10)

epp positive definite determination of the X∞ and Y∞ solution 
(default epp = 1e–6)

k H∞ (sub) optimal controller

gfin final γ value achieved
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The sdhfsyn program outputs several variables, which can be checked to 
ensure that the above conditions are being met. For each γ value the minimum 
magnitude, real part of the eigenvalues of the H Hamiltonian matrices is 
displayed along with the minimum eigenvalue of X∞, which is the solution to 
the X Riccati equation. A # sign is placed to the right of the condition that failed 
in the printout. This additional information can aid you in the control design 
process.

Examples An illustrative example is given in the “Discrete-Time and Sampled-Data H• 
Control” section in Chapter 3.

Algorithm sdhfsyn uses variations of the formulae described in the Bamieh and Pearson 
paper to obtain an equivalent discrete-time system. (These variations are done 
to improve the numerical conditioning of the algorithms.) A preliminary step is 
to determine whether the norm of the continuous-time system over one 
sampling period without control is less than the given γ-value, this requires a 
search and is computationally a relatively expensive step.

Subroutines called. dhfsyn, ham2schr, compnorm

Reference Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic 
Systems with Applications to Sampled-Data Control,” IEEE Transactions on 
Automatic Control, vol. AC–37, pp. 418–435, 1992.

See Also dhfsyn, hinfsyne, hinffi, hinfnorm, hinfsyn, h2syn, h2norm, ric_eig, 
ric_schr
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8see, seeivPurpose Display a SYSTEM or VARYING matrix

Syntax see(mat,iv_low,iv_high) 
see(matin) 
seeiv(mat)

Description see displays the A, B, C, and D matrices of matin for a SYSTEM matrix or the 
independent variable and the matrix at that variable if matin is a VARYING 
matrix. iv_low and iv_high are the optional range of the independent 
variables to be displayed. see displays the matrix itself if the input is 
CONSTANT.

seeiv displays only the independent variable of the input VARYING matrix 
mat. An error message is displayed if the input matrix is not a VARYING 
matrix.

Examples The see command displays any type of matrix. An example of its use for 
SYSTEM and VARYING matrices follows.

see(sys)
A matrix

1 1
1 1

press any key to move to B matrix
B matrix

2 2
2 2

press any key to move to C matrix
C matrix

3 3
press any key to move to D matrix
D matrix

4 4
sysg = frsp(sys,[0.4 0.9]);
see(sysg)
1 row2 columns
iv = 0.4

-1.7692 - 1.1538i-1.7692 - 1.1538i
iv = 0.9

-0.9896 - 2.2453i-0.9896 - 2.2453i
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See Also getiv, mprintf, rifd, seesys, sortiv 
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8seesysPurpose Display a SYSTEM or VARYING matrix with sprintf formatting

Syntax seesys(matin,'format')

Description seesys displays a SYSTEM matrix in packed form if matin is a SYSTEM 
matrix, or the independent variable and the matrix at that variable if matin is 
a VARYING matrix. The optional string format specifies the format exactly as 
in the MATLAB function sprintf. seesys is similar to see, but prints a 
SYSTEM matrix in packed form and gives more control over formatting. The 
default format is %.1e. An incorrect format string can cause erroneous output 
displays. See sprintf and mprintf for more details.

Examples The seesys command displays any type of matrix. An example of its use for 
SYSTEM and VARYING matrices follows.

seesys(sys)

l.0e+00    l.0e+00  |  2.0e+00    2.0e+00
l.0e+00    l.0e+00  |  2.0e+00    2.0e+00
--------------------|---------------------
3.0e+00    3.0e+00  |  4.0e+00    4.0e+00

seesys(sys,'%1.0f')

1   1  |  2   2
1   1  |  2   2
-------|--------
3   3  |  4   4

sysg = frsp(sys, [0.4 0.9]);
seesys (sysg)
1 row 2 columns
iv = .4
-1. 8e+00 -1. 8e+00
iv = .9
-9.9e-01 -9.9e-01

See Also getiv, mprintf, rifd, see, sortiv 
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8sel, reordsysPurpose Select rows/outputs and columns/inputs from a CONSTANT, SYSTEM or 
VARYING matrix or reorder the SYSTEM states

Syntax out = sel(mat,rows,cols) 
out = sel(sys,outputs,inputs) 
sysout = reordsys(sys,index)

Description sel selects desired rows and columns from a CONSTANT/VARYING matrix, 
or outputs and inputs from a SYSTEM matrix. For CONSTANT and VARYING 
matrices, the rows and cols input arguments are row vectors with the desired 
rows/columns of mat specified. For SYSTEM matrices, outputs and inputs are 
row vectors with the desired inputs/outputs specified. Use the string ':' to 
specify all rows (inputs) and/or columns (outputs).

reordsys reorders the states of SYSTEM matrix sys as defined by the vector 
of position variables, index. The index variable is restricted to be the same 
length as the number of states of sys. This command can be used in conjunction 
with strans and sresid to reduce the states of a SYSTEM matrix.

Examples You can use the sel command with any matrix type. First, construct and 
display a one state, two output, three input SYSTEM matrix.

minfo(sys)
system:1 states2 outputs3 inputs
seesys(sys)

1.0e+00  |  2.0e+00   3.0e+00   4.0e+00
---------|------------------------------
5.0e+00  |  6.0e+00   7.0e+00   8.0e+00
9.0e+00  |  1.0e+01   1.1e+01   1.2e+01
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Reorder the outputs of sys to be output 2, 1 and repeat output 2; also reorder 
the inputs to be input 3, 1 and 2.

sys2 = sel(sys,[2 1 2],[3 1 2]); 
minfo(sys2)
system:1 states3 outputs3 inputs
seesys(sys2)
 
1.0e+00  |  4.0e+00   2.0e+00   3.0e+00
---------|------------------------------
9.0e+00  |  1.2e+01   1.0e+01   1.1e+01
5.0e+00  |  8.0e+00   6.0e+00   7.0e+00
9.0e+00  |  1.2e+01   1.0e+01   1.1e+01

The same manipulations can be done on a VARYING matrix.

sysg =frsp(sys,logspace(-1,0,2)); 
see(sysg)
2 rows3 columns
indep variable 0.1

–3.9010 – 0.9901i    –7.8515 – 1.4851i   –11.8020 – 1.9802i
–7.8218 – 1.7822i   –15.7327 – 2.6733i   –23.6436 – 3.5644i

indep variable 1

1.0000 – 5.0000i   –0.5000 –  7.5000i   –2.0000 – 10.0000i
1.0000 – 9.0000i   –2.5000 – 13.5000i   –6.0000 – 18.0000i

Select the second and first outputs and the third and second inputs and display 
them.

part = sel(sysg,[2 1],[3 2]); 
see(part)
2 rows2 columns
indep variable 0.1

–23.6436 – 3.5644i   –15.7327 – 2.6733i
–11.8020 – 1.9802i    –7.8515 – 1.4851i
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indep variable 1

–6.0000 – 18.0000i    –2.5000 – 13.5000i
–2.0000 – 10.0000i    –0.5000 –  7.5000i

The command reordsys interchanges states in a SYSTEM matrix. The matrix 
(sys) has four states, two inputs, and one output and it is to be reordered so 
that states three and four interchange with states one and two in the 
state-space system.

minfo(sys)
system: 4 states1 outputs2 inputs
seesys(sys)

1.5e-01   -1.3e-01   0.0e+00   0.0e+00  |  2.4e-01   2.3e-01
1.3e-01    1.5e-01   0.0e+00   0.0e+00  | -4.4e-01  -2.2e-01
0.0e+00    0.0e+00  -6.2e-01   0.0e+00  | -6.5e-01  -3.9e-01
0.0e+00    0.0e+00   0.0e+00   2.0e+00  |  1.2e+00   7.2e-01
----------------------------------------|--------------------
-9.7e-02  -1.2e-01  -1.3e-01   1.1e+00  |  0.0e+00   0.0e+00

sysout = reordsys(sys,[3 4 1 2]);
minfo(sysout)
system: 4 states1 outputs2 inputs
seesys(sysout)

-6.2e-01    0.0e+00   0.0e+00  0.0e+00  |  -6.5e-01  -3.9e-01
 0.0e+00    2.0e+00   0.0e+00  0.0e+00  |   1.2e+00   7.2e-01
 0.0e+00    0.0e+00   1.5e-01 -1.3e-01  |   2.4e-01   2.3e-01
 0.0e+00    0.0e+00   1.3e-01  1.5e-01  |  -4.4e-01  -2.2e-01
---------------------------------------|---------------------
-1.3e-01   1.1e+00  -9.7e-02 -1.2e-01  |   0.0e+00   0.0e+00

See Also getiv, sresid, strunc, unpck, vunpck
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8siggenPurpose Generate VARYING matrix functions

Syntax y = siggen('function(t)',t)

Description siggen is a general purpose signal generator. You can provide a timebase with 
the argument t, and the function to be evaluated with the first argument (a 
string), function(t). The output, y, will be a VARYING matrix. t could also be 
VARYING, in which case the timebase is the independent variables contained 
in t.

function(t) is not necessarily dependent on t. In the cases where it doesn’t 
depend on t, siggen can be slow. This is because function is evaluated with a 
MATLAB eval call for every element in t. For example, consider generating a 
random vector. The command

u = siggen('rand(size(t))',[0:100]);

generates a 1 × 1 VARYING matrix with 101 independent variables. This is 
very fast because it depends on t. To a 2 × 1 VARYING matrix of random 
values, you can use the command

u = siggen('rand(2,1)',[0:100]);

This is slow because 101 evaluations of rand(2,1) are performed in a MATLAB 
for loop. For vectors of random signals, a much faster alternative is to use vpck 
with a random matrix of the appropriate size. In the above example this would 
be

u = vpck(rand(202,1),[0:100]);

Examples The first example illustrates what is perhaps the most common use of siggen. 
A single-input single-output signal is created from MATLAB mathematical 
functions. It is important to use t as the independent variable in the function 
string.

timebase = [0:0.05:10]; 
y1 = siggen('exp(0.1*t) - sin(3*t)',timebase); 
minfo(y1)
varying:201 pts1 rows1 cols
vplot(y1) 
title('siggen example: function depends on t')
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The second example illustrates that the second argument can make use of the 
independent values of a VARYING matrix. Note also that the specified function 
is independent of t, and is executed at each instance of t. This example is 
included to illustrate that the function string need not depend on t. In practice 
the string rand(size(t)) is orders of magnitude faster than rand.

y2 = siggen('rand',y1); 
minfo(y2)
varying:201 pts1 rows1 cols
vplot(y2) 
title('siggen example: function independent of t')
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The use of siggen is not restricted to single-input, single-output signals. The 
following example creates a 2 × 2 VARYING matrix. In this example the matrix 
elements are all functions of t and the results plotted in the figure. They could 
equally well have all been independent of t, for example 'rand(3,2)' could be 
the function string. (Note that they must all be one type or the other (this 
restriction does not apply if t is a single number).

func = '[t/max(t) 2*cos(3*t+0.2); 2+0.1*sin(2*t) '; 
func = [func ' sqrt(t)+0.3*rand(size(t))]']; 
y3 = siggen(func,timebase); 
minfo(y3)
varying:201 pts2 rows2 cols
vplot(y3) 
title('Siggen example: 2 x 2 varying matrix')
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siggen cannot generate stair-step signals with user-specified values. You can 
do this however (for single-input/single-output signals) using the command 
vpck or the µ-Tools commmand step_tr. Vectors of signals can be created with 
vpck and abv. The following example demonstrates the use of vpck. vinterp is 
used to plot a meaningful representation of the signal.

y4 = vpck([0:10]',[0:2:20]'); 
minfo(y4)
varying:11 pts1 rows1 cols
vplot(vinterp(y4,0.1)) 
title('Siggen example: step function')
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See Also cos_tr, sin_tr, step_tr, vpck, vinterp
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8simguiPurpose A graphical user interface for time simulations of linear fractional 
transformations

Syntax simgui

Description simgui provides the ability to simulate linear fractional models and plot their 
responses. The standard linear fractional model considered is shown below. 

The P block corresponds to the open-loop plant interconnection model, referred 
to as Plant in simgui. The K block corresponds to a state-space controller, 
Controller in simgui. The ∆ block corresponds to the perturbation to the model, 
Perturbation in simgui. The Input Signal to the time simulation is denoted by 
U in the figure. The individual systems are formed using the starp command. 
The time simulation outputs available for plotting correspond to the variable 
Y. Three types of simulation are possible: continuous-time using trsp, 
discrete-time using dtrsp, and sample-data using sdtrsp.

simgui has two interface windows and up to six plot windows:

• Main Simulation window, which is the main interface for the user.

• Parameter window, which is used to modify properties of the time 
simulation, such as the final time, integration step size, initial conditions, 
and which variables are automatically exported to the workspace.

• Plot windows, where the plots of time responses are displayed. You can open 
up to six of these windows.

Standard Linear Fractional Model
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A detailed description of the use and application of simgui is provided in the 
“LFT Time Simulation User Interface Tool: simgui” section in Chapter 6.

Examples An example of using simgui for simulation of a linear fractional transformation 
is shown in the “LFT Time Simulation User Interface Tool: simgui” section in 
Chapter 6.

See Also dtrsp, sdtrsp, starp, trsp, vplot
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8spolesPurpose Calculate the eigenvalues of a SYSTEM A matrix

Syntax out = spoles(sys)

Description spoles returns the eigenvalues of the A matrix from the SYSTEM matrix sys.

Examples Find the poles of the two input, one output, three state SYSTEM matrx sys.

A = [1 1 1; 3 1 1; 1 1 -2]; 
B = 2*ones(3,2); 
C = 3*ones(1,3); 
D = 4*ones(1,2); 
sys = pck(A,B,C,D); 
minfo(sys)
system: 3 states1 outputs2 inputs
spoles(sys)

3.1474
-0.8186
-2.3289

eig(A)
ans =

3.1474
-0.8186
-2.3289

Algorithm spoles uses the MATLAB command schur to find the eigenvalues of the 
SYSTEM A matrix. This is a more numerically reliable method than using the 
eig function.

See Also eig, rifd, schur, szeros



srelbal, sfrwtbal, sfrwtbld, sncfbal, sdecomp

8-162

8srelbal, sfrwtbal, sfrwtbld, sncfbal, sdecompPurpose srelbal calculates the stochastically balanced realization of a SYSTEM 
matrix, sfrwtbal, the frequency weighted balanced realization for performing 
relative error, and sfrwtbld, the frequency weighted model order reduction. 
sncfbal calculates the normalized coprime factorizations. sdecomp decomposes 
a SYSTEM matrix as the sum of stable and unstable systems.

Syntax [sysb,relsv,sysfact] = srelbal(sys,tol) 
[sys1,sig1] = sfrwtbal(sys,wt1,wt2) 
syshat = sfrwtbld(sys1hat,wt1,wt2)
[sysnlcf,signcf,sysnrcf] = sncfbal(sys,tol) 
[sysst,sysun] = sdecomp(sys,bord,fl)

Description srelbal performs a stochastically balanced realization of the input SYSTEM 
matrix. sys must be stable and be of full column rank at infinite frequency, but 
not necessarily square or minimum phase. Difficulties may occur if sys has 
zeros on the imaginary axis. sysb will have the same transfer function as sys, 
and sysfact gives the stable minimum phase system such that sys~ sys = 
sysfact sysfact~. Note that sys~ denotes cjt(sys). If [a,b,c,d] = 
unpck(sysb) and [af,bf,cf,df] = unpck(sysfact), then the realization 
[a,bf,c,0] will be balanced with Hankel singular values relsv, and will also 
equal the stable part of sys*sysfact~–1. A reduced-order system can be 
obtained by strunc(sysb,k) that will have guaranteed performance in the 
relative error.

sfrwtbal performs a frequency-weighted balancing. It calculates the stable 
part of (wt1) ~–1 * sys* (wt2)~–1 and sys1 is a balanced realization of this, 
with Hankel singular values sig1. wt1 and wt2 must be stable and minimum 
phase, square and of compatible dimensions with sys. wt2 has the identity as 
default value. sys must be stable. The resulting system sys1 can then be 
approximated by sys1hat of order k using, for example, hankmr, and an 
approximation syshat to sys is obtained by sfrwtbld, which calculates the 
stable part of (wt1)~ *sys1hat*(wt2)~ using sdecomp.

A general lower bound on the frequency weighted approximation error is given 
by

(wt1) ~–1(sys - syshat)(wt2)~–1||∞ ≥ sig1(k + 1)

where in the relative error case wt1 is the identity and wt2 = sysfact.
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sncfbal produces balanced realizations of the normalized left and right 
coprime factorizations of a SYSTEM matrix. That is for a transfer function G, 

balanced state-space realizations are calculated for  and , where 

, , , and 

, and  are all stable. The Hankel singular values of both  

and  are given by the column vector signcf. Model reduction for these 

systems can then be performed using strunc or hankmr. The method is well 
suited to plant or controller reduction in feedback systems.

sdecomp decomposes a system into the sum of two systems, sys = 
madd(sysst,sysun). sysst has the real parts of all its poles < bord and sysun 
has the real parts of all its poles ≥ bord. bord has default value 0. The D matrix 
for sysun is zero unless fl = 'd' when that for sysst is zero.

srelbal, sfrwtbal , sfrwtbld, sncfbal, and sdecomp are restricted to be used 
on continuous-time SYSTEM matrices.

Examples Given the system  reduce the system to two and 

one states, respectively. An approximate system of order 1 or 2 can be obtained 
as follows.

sys = zp2sys([-1 -10 -90],[-2 -91 -100]); 
[sysb,relsv,sysfact] = srelbal(sys); 
disp(relsv')

8.5985e-012.0777e-012.1769e-04
sysrel1 = strunc(sysb,1); 
sysrel2 = strunc(sysb,2);

The relative error in the second-order model will be negligible since relsv(3) is 
very small; however, with a first-order model, it will be substantial.

Nl Ml
Nr

Mr

NlNl
~ MlMl

~
+ I= NrNr

~ MrMr
~

+ I= G Ml
1– Nl NrMr

1–
= =

Nl Ml Nr, , Mr Nl Ml

Nr

Mr

sys
s 1+( ) s 10+( ) s 90+( )

s 2+( ) s 91+( ) s 100+( )
--------------------------------------------------------------=
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The reduced-order models of order k can be obtained in the frequency weighted 
case as follows.

wt1 = nd2sys([1 10],[1 1]); 
[sys1,sig1] = sfrwtbal(sys,wt1); 
disp(sig1');

4.1873e-014.6472e-031.0280e-04
sys1hat = hankmr(sys1,sig1,1,'d'); 
syshat = sfrwtbld(sys1hat,wt1); 
disp(hinfnorm(mmult(msub(sys,syshat),minv(wt1))));

4.6471e-034.6517e-03Inf

In this example the method nearly reaches the lower bound, but this cannot be 
claimed in general.

Now consider approximating the unstable third order system,

using sncfbal. First the balanced realization of the normalized left coprime 
factors is calculated, then this is truncated to two states and the reduced-order 
system recovered from these normalized coprime factors using starp.

sys = zp2sys([],[0 1 -10],10); 
[sysnlcf,signcf] = sncfbal(sys); 
disp(signcf')

9.6700e-015.2382e-012.3538e-02
sysnlcfr = strunc(sysnlcf,2); 
sysr = starp(mmult([1;1],msub(sysnlcfr,[0 1])),-1,1,1)

If this is the transfer function of a plant to be controlled, then signcf(1) can 
be used to predict the possible robust stability to perturbations in the coprime 
factors, and the potential for model-order reduction of the controller is given by 
signcf(2:3), McFarlane and Glover (1989). In this example the maximum 
stablizable perturbations in the coprime factors is given by 

. Furthermore if a controller is designed to be 
optimal for the second-order reduced model, then its stability margin will be at 
least

0.25477 - 2 * signcf(3) = 0.20770

sys
10

s s 1–( ) s 10+( )
----------------------------------------=

1 signcf(1 )– 2 0.20770=
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Algorithm The algorithms are based on the results in the following papers.

Reference Anderson, B.D.O., and Y. Liu, “Controller reduction: Concepts and 
Approaches,” IEEE Transactions on Automatic Control, vol. AC–34, pp. 802–
812, 1989.

Desai, U.B., and D. Pal, “A transformation approach to stochastic model 
reduction,” IEEE Transactions on Automatic Control, vol. AC–29, pp. 1097–
1100, 1984.

Glover, K., “Multiplicative approximation of linear multivariable systems with 
error bounds,” Proceedings of the American Control Conference, Seattle, pp. 
1705–1709, 1986.

Latham, G.A., and B.D.O. Anderson, “Frequency-weighted optimal Hankel 
norm approximation of state transfer functions,” Systems and Control Letters, 
vol. 5, pp. 229–236, 1985.

McFarlane, D.C., and K. Glover, Robust Controller Design using Normalised 
Coprime Factor Plant Descriptions, Springer-Verlag, Lecture Notes in Control 
and Information Sciences, vol. 138, 1989.

Wang, W., and M.G. Safonov, “A tighter relative error bound for balanced 
stochastic truncation,” Systems and Control Letters, vol. 14, pp. 307–317, 1990.

See Also hankmr, sysbal, sresid, strunc
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8sresid, struncPurpose Reduce the state dimension of a SYSTEM matrix

Syntax sysout = sresid(sys,ord) 

sysout = strunc(sys,ord)

Description sresid residualizes the last states of a SYSTEM matrix sys. sresid accounts 
for the DC contribution of the last columns and rows of the SYSTEM A matrix 
and the corresponding rows and columns of B and C. sresid assumes that the 
SYSTEM matrix is ordered so that the last states are to be residualized. If the 
orignal SYSTEM matrix is partitioned as

with A11 of size ord × ord, then the command

sysout = sresid(sys,ord)

results in

strunc truncates the states of the input system matrix sys, to a system with 
state dimension equal to ord. strunc can be used in conjunction with the model 
reduction routines sysbal and hankmr.

The resulting SYSTEM output matrix is

sysout = pss2sys ([A_11 B_1; C_1 D]);

p

A11 A12 B1

A21 A22 B2

C1 C2 D

=

sysout pss2sys
A11 B1

C1 D

A12

C2

A22
1–

A21 B2 , ord–
 
 
 
 

=
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Examples A two input, one output, four state SYSTEM is reduced down to a two input, 
one output, two state SYSTEM via sresid and strunc. The only difference 
between the two reduced-order systems is the value of their D matrices.

seesys(sys)
-1.2e-01   0.0e+00   0.0e+00   0.0e+00 | 9.le-01   5.2e-01
 0.0e+00  -3.2e-01   0.0e+00   0.0e+00 | 6.le-02   3.2e-01
 0.0e+00   0.0e+00  -4.3e+00   0.0e+00 | 9.le-01   9.9e-01
 0.0e+00   0.0e+00   0.0e+00  -9.9e+01 | 5.le-01   4.9e-01
---------------------------------------|-------------------
 2.7e-01   9.le-02   9.5e-01   7.4e-02 | 0.0e+00   0.0e+00

sys_strunc = strunc(sys,3);
seesys(sys_strunc)
-1.2e-01    0.0e+00   0.0e+00  |  9.le-01   5.2e-01
 0.0e+00   -3.2e-01   0.0e+00  |  6.le-02   3.2e-01
 0.0e+00    0.0e+00  -4.3e+00  |  9.le-01   9.9e-01
-------------------------------|---------------------
 2.7e-01    9.le-02   9.5e-01  |  0.0e+00   0.0e+00

sys_resid = sresid(sys,3)
seesys(sys_resid)

-1.2e-01   0.0e+00   0.0e+00  |  9.le-01   5.2e-01
 0.0e+00  -3.2e-01   0.0e+00  |  6.le-02   3.2e-01
 0.0e+00   0.0e+00  -4.3e+00  |  9.le-01   9.9e-01
------------------------------|--------------------
 2.7e-01   9.le-02   9.5e-01  |  3.8e-04   3.7e-04

sysstrunc = strunc(sys,3); seesys(sysstrunc)
sysresid = sresid(sys,3); seesys(sysresid)

See Also rifd, statecc, strans
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8starpPurpose Form the Redheffer star product of two VARYING/SYSTEM/CONSTANT 
matrices. The star product is a generalization of a linear fractional 
transformation

Syntax sysout = starp(top,bot,dim1,dim2)

Description Connects the two matrices top and bot in the star product loop shown below.

The last dim1 outputs of top are fed to the first dim1 inputs of bot, and the first 
dim2 outputs of bot are fed into the last dim2 inputs of top. The remaining 
inputs and outputs constitute sysout. By this description, the dimensions must 
satisfy

min(dim_out(top),dim_in(bot)) ≥ dim1

min(dim_out(bot),dim_in(top)) ≥ dim2

Further restrictions also arise

IF dim1 = dim_out(top)   &     dim2 = dim_out(bot)

THEN there are no outputs remaining in the interconnection

IF dim1 = dim_in(bot)     &     dim2 = dim_in(top)

THEN there are no inputs remaining in the interconnection
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In either case, it is unclear what to return as sysout, so it is returned empty. 
There is one exception to this situation. If either top or bot is a SYSTEM 
matrix with a nonzero number of states, and all of the equalities in the both of 
the above IF conditions hold (hence there are no inputs or outputs in the 
interconnection), then sysout will be a CONSTANT matrix, and will be the A 
matrix governing the internal dynamics of the loop.

As usual, the only types of matrices that cannot be combined are SYSTEM 
matrices with VARYING matrices.

If only two arguments are given (i.e., no dimensions specified),

out = starp(top,bot);

then the operation is equivalent to

dim1 = min(ynum(top),unum(bot)); 
dim2 = min(unum(top),ynum(bot)); 
out = starp(top,bot,dim1,dim2);

Algorithm The “m-Tools Commands for LFTs” section in Chapter 4 provides details of the 
star product formulae.

Reference Redheffer, R., “Inequalities for a matrix Riccati equation,” Journal of 
Mathematics and Mechanics, vol. 8, no. 3, 1959.

See Also sysic



statecc, strans

8-170

8statecc, stransPurpose Apply state-coordinate transformation to a SYSTEM matrix

Syntax sysout = statecc(sysin,t) 
[sysout,v] = strans(sys)

Description statecc applies a state coordinate transformation to the matrix, yielding a new 
SYSTEM matrix with 

sysout = pck(tA*t,tB,C*t,D)

where A, B, C, and D are the state-space entries of the matrix sysin. t is 
restricted to be square and have the same dimensions as the A matrix.

strans transforms the A matrix of sys in bidiagonal form with the complex 
conjugate roots in real 2 × 2 form. sysout contains the transformed SYSTEM 
matrix and v is the transformation matrix. The A matrix is ordered by 
increasing magnitude of its eigenvalues. strans calls the MATLAB eig 
command to do the reordering.

Note  strans may be inaccurate when a SYSTEM/CONSTANT matrix has 
repeated eigenvalues. This is due to the potential defective eigensystem, and 
the lack of a full set of eigenvectors.

Examples The strans command shows the individual contributions of the modes of the 
SYSTEM matrix. In this example sys, which has four states, two inputs and 
one output is transformed into bidiagonal form.

see(sys)
A matrix

0.2190   0.9347   0.0346   0.0077
0.0470   0.3835   0.0535   0.3834
0.6789   0.5194   0.5297   0.0668
0.6793   0.8310   0.6711   0.4175
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B matrix

0.6868   0.5269
0.5890   0.0920
0.9304   0.6539
0.8462   0.4160

C matrix

0.7012      0.9103    0.7622    0.2625

D matrix

O O

sys=strc
see(sys)

A matrix

-0.0763         0          0         0
      0    0.1082    –0.4681         0
      0         0          0    1.4095

B matrix

-0.4731    -0.1839
 0.5971     0.3199
 0.2869     0.5542
-1.7033    -0.8132
C matrix

–0.1150     0.0298    0.3214     –1.0477 

D matrix

O O

See Also eig, sclin, sclout, veig
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8sysbal, hankmrPurpose Calculate the balanced realization and optimal Hankel norm approximation of 
a SYSTEM matrix. sysbal and hankmr are restricted to be used on 
continuous-time SYSTEM matrices whose poles have negative real part

Syntax [sysb,hanksv] = sysbal(sys,tol) 
[sysred,sysanti,siganti] = hankmr(sysb,hanksv,k,opt)

Description sysbal performs a truncated balanced realization of the input SYSTEM 
matrix. The result is truncated to retain all Hankel singular values greater 
than tol. If tol is omitted then it is set to

max(hanksv(1) * 1.0–12,1.0–16)

The second output argument of sysbal is the vector hanksv, which contains the 
Hankel singular values of the input system, sys. One method to get a 
reduced-order model is to truncate the balanced system sysb using strunc.

hankmr returns sysred, the optimal Hankel norm approximation of order k to 
the SYSTEM matrix, sysb, which is a balanced realization with Hankel 
singular values hanksv and is of order n (n > k). The fourth optional input 
argument, opt, may be omitted in which case sysanti contains the anti-causal 
term such that the L∞ norm of (sysb - sysred - sysanti) is hanksv(k+1) or 
set to

'a' when sysout also includes the anti-casual term, and sysanti=0 
'd' when sysout includes a D matrix to reduce the H∞ error norm of 

(sys – sysout)
If the d option is set, the third output argument of hankmr is the vector siganti, 
which contains the Hankel singular values of the system, sysanti~. In this 
case

hanksv(k+1)≤||sys - sysred||∞≤hanksv(k+1)+sum(siganti)
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Examples Given the system , reduce the system to two and 

one states, respectively. First reduce the system to two states.

sys = zp2sys([-10 -90],[-2 -91 -100]); 
w = logspace(-1,3,100); 
sysg = frsp(sys,w); 
[syssb,sv]=sysbal(sys); 
sv
ans =
2.0613e-024.1136e-031.2663e-06
sys2s = strunc(syssb,2);
sys2sg = frsp(sys2s,w);
sys2h = hankmr(syssb,sv,2);
sys2hg = frsp(sys2h,w);
vplot('bode',sys_g,sys2sg,sys2hg) 
tmp = 'Original 3 state system, 2 state Balanced ';
tmp1 = 'and Hankel Model Reduction';
title([tmp tmp1])

sys
s 10+( ) s 90+( )

s 2+( ) s 91+( ) s 10+( )
-----------------------------------------------------------=
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Notice that there is virtually no difference between the three systems. Now we 
will reduce the original system down to one state with sysbal and hankmr.

sys1s = strunc(syssb,1);
sys1sg = frsp(sys1s,w);
sys1h = hankmr(syssb,sv,1);
sys1hg = frsp(sys1h,w);
[syssb,sv] = sysbal(sys);
vplot('bode',sys_g,sys1sg,sys1hg) 
tmp = 'Original 3 state system, 1 state Balanced ' 
tmp1 = 'and Hankel Model Reduction') 
title([tmp tmp1])

The original three state system corresponds to the solid line, the one state 
balanced realization system corresponds to the dashed line, and the one state 
Hankel model reduced system corresponds to the dotted line. There is 
significant differences between the models and the two model reduction 
techniques. Depending on the model reduction objectives, the one state models 
may be inappropriate for use.
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Reference Glover, K. “All optimal Hankel-norm approximations of linear multivariable 
systems and their error bounds,” International Journal of Control, vol. 39, pp. 
1115–1193, 1984.

See Also sdecomp, sfrwtbal, sfrwtbld, sresid, srelbal, sresid
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8sysicPurpose Form linear interconnections of CONSTANT and SYSTEM matrices (or 
CONSTANT and VARYING matrices)

Syntax sysic

Description µ-Tools provides a simple linear system interconnection program called sysic. 
It forms linear interconnections of CONSTANT and SYSTEM matrices (or 
CONSTANT and VARYING matrices, though this can require a lot of memory), 
by writing the loop equations of the interconnection.

Using sysic involves setting up several variables in the MATLAB workspace, 
and then running the M-file sysic. The variables that are defined delineate the 
details of the interconnection.

Variable Descriptions 
A list and description of the variables required by sysic follow. 

systemnames. This variable is a character string, which contains the names of 
the matrices used in the interconnection. The names must be separated by 
spaces and/or tabs, and there should be no additional punctuation. Each named 
system must exist in the MATLAB workspace at the time the program sysic 
is run. The SYSTEM matrices names used within the sysic program are 
limited to 10 characters. This limitation is due to the MATLAB 19 character 
limitation on the workspace variable names. That is, a SYSTEM matrix named 
andygaryjohnkeithroy would be invalid.

inputvar. This variable is a character string, with names of the various external 
inputs that are present in the final interconnection. The input names are 
separated by semicolons, and the entire list of input names is enclosed in 
square brackets [ ]. Inputs can be multivariable signals; for instance a 
windgust input, with three directions (x, y, and z) that can be specified by using 
windgust{3}. This means that there is a three variable input to the 
interconnection called windgust. Alternatively, this could be specified as three 
separate, scalar inputs, say wingustx, windgusty, and windgustz. The order 
that the input names appear in the variable inputvar is the order that the 
inputs will be placed in the interconnection.
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outputvar. This variable is a character string, describing the outputs of the 
interconnection, which must be linear combinations of the subsystem outputs 
and the external inputs. Semicolons are used to separate the channels of the 
output variables. Between semicolons, signals can be added and subtracted, 
and multiplied by scalars. For multivariable subsystems, arguments within 
parentheses specify which subsystem outputs are to be used and in what order. 
For instance plant (2:5,8,1,9:11) specifies outputs 2,3,4,5,8,1,9,10,11 
from the system plant. If no arguments are specified with a system, then it is 
assumed that all outputs are being used, and in the order they appear in that 
system.

input_to_sys. Each subsystem named in the variable systemnames must have a 
variable set to define the inputs to the subsystem. If the system name is 
controller, then the variable that must be set should be called 
input_to_controller. It is specified in the same manner that the variable 
outputvar is set, with inputs consisting of linear combinations of subsystem 
outputs and external inputs. Separate channels are separated by semicolons, 
and the order of the inputs in the variable should match the order of the inputs 
in the system itself.

sysoutname.  This character string variable is optional. If it exists in the 
MATLAB workspace when sysic is run, then the interconnection that is 
created by running sysic is placed in a MATLAB variable whose name is given 
by the string in sysoutname. If this variable does not exist in the workspace, 
then the interconnection is automatically placed in the variable ic_ms.

cleanupsysic. After running sysic, all of the above variables, which describe the 
interconnection, are left in the workspace. These will be automatically cleared 
if the optional variable cleanupsysic is set to the character string yes. The 
default value of the variable is 'no' which does not result in any of the sysic 
descriptions you defined to be cleared. The MATLAB matrices listed in the 
variable systemnames are never automatically cleared.

Running sysic 
If the variables systemnames, inputvar, and outputvar are set, and for each 
name name_i appearing in systemnames, the variable input_to_name_i is set, 
then the interconnection is created by running the M-file sysic. Depending on 
the existence/nonexistence of the variable sysoutname, the resulting 
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interconnection is stored in your specified MATLAB variable, or the default 
MATLAB variable ic_ms. 

Within sysic, a series of error-checking routines monitor the consistency and 
availability of system matrices and their inputs. These routines provide a basic 
level of error detection to aid you in debugging. The input/output dimensions of 
the final interconnection are defined by inputvar and outputvar variables. 

The syntax of sysic is limited, and for the most part is restricted to what is 
shown here. Some additional features are illustrated in the more complicated 
demonstration problems. Note that you must keep track of input/output 
variables defined for the final interconnection structure.

Examples The HIMAT example provides another example of how to construct 
interconnection systems from block diagram descriptions. The interconnection 
diagram below corresponds to the HIMAT design example. 

Given that there are four SYSTEM matrices, named himat, wdel, wp, and k, in 
the MATLAB workspace, each with two inputs, and two outputs. The following 
10 lines form the sysic commands to make the interconnection structure 
shown below, which is placed in the variable clp. You can execute these at the 
command line (as shown) or type them into an M-file. (Note that to run this 
example you must create the variables himat, wdel, wp and k.)

systemnames = ' himat wdel wp k ';
inputvar = '[ pertin{2};dis{2}]';
outputvar = '[ wdel ;wp ]';
input_to_himat = '[ k + pertin ]';
input_to_wp = '[ dist + himat ]';
input_to_wdel = '[ k ]';
input_to_k = '[ -dist - himat ]';
sysoutname = 'clp';
cleanupsysic = 'yes';
sysic;
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The final interconnection structure is located in clp with two sets of inputs, 
pertin and dist, and two sets of outputs w and e, corresponding to the 
perturbation and error outputs.

See Also abv, madd, daug, mmult, sbs, sel, starp
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8szerosPurpose Transmission zeros of a SYSTEM matrix

Syntax veczeros = szeros(sys,epp)

Description szeros calculates the transmission zeros of the input SYSTEM matrix, sys. 
The output veczeros contains the vector of transmission zeros.

epp is an optional input argument which is used to test the closeness of the 
generalized eigenvalues of the randomly perturbed matrices. Its default value 
is the machine epsilon. Occasionally zeros at infinity are displayed as very 
large values due to numerical accuracy problems.

For a square SYSTEM matrix, [A B; C D], the generalized eigenvalue test 
consists of finding the roots of

Algorithm For a square system, the transmission zeros are found via the generalized 
eigenvalue problem described above. To solve for the transmission zeros of a 
nonsquare SYSTEM matrix, additional random rows or columns are 
augmented to the SYSTEM matrix to make it square and the corresponding 
zeros are found. This is done twice, and the unchanged generalized 
eigenvalues, where the difference between the eigenvalues is less than epp, are 
considered to be the transmission zeros of the SYSTEM matrix.

Reference Laub, A.J., and B.C. Moore, “Calculation of transmission zeros using QZ 
techniques,” Automatica, vol. 14, pp. 557–563, 1978.

See Also spoles

det A λI– B

C D 
 
 

0=



trsp, dtrsp, sdtrsp

8-181

8trsp, dtrsp, sdtrspPurpose Compute the time response of linear system

Syntax y = trsp(sys,u,tfinal,int,x0) 
y = dtrsp(dsys,u,T,tfinal,x0) 
[output,y,u] = sdtrsp(sys,k,input,T,tfinal,int,x0,z0)

Description trsp computes the time response of the continuous-time system, sys, with the 
input, u. The input, u, is a VARYING matrix, which contains the input signal 
vector at certain points in time. The input can be irregularly spaced in the 
independent variable or a constant, in which case it is assumed to occur at t = 
0.

The final time, tfinal, is an optional argument. If omitted, it defaults to the 
maximum time in u. The time response is calculated as though the input is a 
constant value between the points specified in u. If tfinal is greater than the 
largest independent variable in u, the input is held at the last value in u.

For continuous-time evaluation (trsp), you can optionally specify an 
integration time with the variable int. If this is omitted, or is equal to zero, an 
appropriate value is calculated and displayed. The calculated integration time 
depends on the minimum spacing in the input and the fastest dynamics in sys. 
int will also be the independent variable step size in the regularly spaced 
output, y. If a coarser output is adequate, it can be obtained with the function 
vdcmate.

Initial conditions can optionally be specified with the argument, x0. This 
specifies the state vector at the first time point in the input vector. If x0 is 
omitted, or is a zero scalar, then it is assumed to be a zero vector.

trsp interpolates the input with a zero-order hold of step size equal to int, 
discretizes the output at this same step size, and calculates the response from 
the initial time to tfinal in steps of int.

dtrsp calculates the response for a discrete-time system, dsys. The time (for 
the independent variable) between discrete indices is T. If the input is not 
regularly spaced at intervals of time T, it is interpolated. tfinal and x0 behave 
in the same manner as for trsp.

sdtrsp calculates a sampled-data time response for a closed-loop system with 
a continuous generalized plant (sys) and a discrete controller (K). The 
interconnection is illustrated below.
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The signals, output, y, and u are calculated. T is the sampled-data controller 
sample time, and you have the same input and tfinal options as the trsp 
function. Similarly, an integration step size, int, can optionally be specified for 
the continous part of the simulation. Initial conditions can be specified for sys 
(x0) and K (z0).

Examples A simple SISO system illustrates the use of trsp. This example shows the 
consequences of the input being assumed to be constant between time points.

sys = pck(-1,1,1); 
minfo(sys)
system:1 states1 outputs1 inputs
u = vpck([0:10:50]',[0:10:50]'); 
y = trsp(sys,u,60);
integration step size: 0.1
interpolating input vector (zero order hold)
minfo(y)
varying:601 pts1 rows1 cols
vplot(u,'-.',y,'-') 
xlabel('time: seconds') 
text(10,20,'input') 
text(25,10,'output')
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At first glance the output does not seem to be consistent with the plotted input. 
Remember that trsp assumes that the input is held constant between specified 
values. The vplot and plot commands display a linear interpolation between 
points. This can be more clearly seen by displaying the input signal 
interpolated to at least as small a step size as the default integration step (here 
0.1 seconds).

vplot(u,'-.',vinterp(u,0.1),'--',y,'-') 
xlabel('time: seconds') 
text(5,44,'dash-dot: input') 
text(5,40,'dashed: interpolated input') 
text(5,36,'solid: output')
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The staircase nature of the input is now evident. If you really want to have a 
ramp input, the function vinterp also provides linear interpolation. A linearly 
interpolated input is used in the following example.

uramp = vinterp(u,0.1,60,1); 
minfo(uramp)
varying:601 pts1 rows1 cols
yramp = trsp(sys,uramp);
integration step size: 0.1
vplot(uramp,'-.',yramp,'-') 
xlabel('time: seconds') 
text(20,15,'output') 
text(12,20,'input')
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Note that because the input is regularly spaced, with spacing less than or equal 
to the default integration time, the input is not interpolated by trsp. Since no 
final time was specified in the trsp argument list, and 60 seconds was specified 
to vinterp as the final time, this becomes the last time in the input vector 
uramp.

To illustrate the use of dtrsp, a bilinear transformation generates a digital 
system. The sample time is chosen as 1 second. The output is plotted against a 
1 second interpolation of the input.

T = 1; 
dsys = tustin(sys,T); 
ydig = dtrsp(dsys,u,T); 
vplot(ydig,'-',vinterp(u,1),'-.') 
xlabel('time: seconds')
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To illustrate the use of sdtrsp, consider the application of a discrete controller 
to a double integrator. A continuous plant and a discrete controller are created. 
A sample and hold equivalent of the plant is formed and the discrete 
closed-loop system is calculated. Simulating this with dtrsp gives the system 
response at the sample points. sdtrsp is then used to calculate the intersample 
behavior.

P = nd2sys(1,[1,0,0]); 
T = 1.0/20; 
C=pck([-1.5 T/4; -2/T -.5],[ .5 2;1/T 1/T], ... 

[-1/T2 -1.5/T], [1/T2 0]);

The closed-loop digital system is now set up.

Pd = samhld(P,T); 
systemnames = 'Pd C'; 
inputvar = '[ref]'; 
outputvar = '[Pd]'; 
input_to_Pd = '[C]'; 
input_to_C = '[ref ; Pd]'; 
sysoutname = 'dclp'; 
cleanupsysic = 'yes'; 
sysic;
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dtrsp is used to simulate the digital step response.

ustep = step_tr(0,1,T,20*T); 
y = dtrsp(dclp,ustep,T);

The continuous interconnection is set up and the sampled data response is 
calculated with sdtrsp.

M = mmult([0,1;1,0;0,1],daug(1,P)); 
y1 = sdtrsp(M,C,ustep,T); 
vplot(y,'*',y1,'-') 
axis([0,1,0,1.5]) 
xlabel('Time: seconds') 
title('Step response: discrete (*), &continuous')
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Now we look at the effect of a nonzero initial condition in the continuous 
system. Note how examining the system at only the sample points will 
underestimate the amplitude of the overshoot.

y2 = sdtrsp(M,C,vpck(1,0),T,1,0,[1;0]); 
vplot(y1,'--',y2,'-') 
axis([0,1,0,1.5]) 
xlabel('Time: seconds') 
title('Step response: non zero initial condition')

Finally, we will examine the effect of a sinusoidal disturbance at the 
continuous plant output. This controller has not been designed to reject such a 
disturbance and the system does not contain anti-aliasing filters. Simulating 
the effect of anti-aliasing filters is easily accomplished by including them in the 
continuous interconnection structure.

M2 = mmult([0,1,1;1,0,0;0,1,1],daug(1,1,P)); 
dist = sin_tr(41,0.1,0.001,1); 
[dat,datptr,t] = vunpck(dist); 
input = abv(vpck(ones(t),t),dist); 
[y3,meas,act] = sdtrsp(M2,C,input,T); 
vplot(y3,'-',input,'--') 
xlabel('Time: seconds') 
title('Step response: disturbance (dashed) & output (solid)')
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Algorithm trsp first calculates an integration time (or uses the specified integration time) 
to determine the sample time at which to discretize the continuous-time 
system. The integration time is taken to be the inverse of 10 times the fastest 
mode of the input system. The input vector is interpolated at each sample time 
via a zero-order hold, and then a sample-hold of the input continous system is 
performed. Finally the time response of the system is performed via a for loop 
at each integration time step. dtrsp is provided a discrete time system and a 
sample time. dtrsp first interpolates the input vector via a zero-order hold and 
then determines the time response via a for loop at each sample time.

Caution Systems with fast dynamics lead to very small integration times. 
This is both time consuming and requires a significant amount of storage. We 
recommend you residualize the fastest modes of the system, which does not 
affect the time response. This can be done with the µ-Tools command sresid.

See Also cos_tr, siggen, sin_tr, step_tr, sysbal, vdcmate, vinterp
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8tustinPurpose Create a discrete-time version of a continuous-time SYSTEM matrix using a 
bilinear or prewarped tustin transformation

Syntax dsys = tustin(csys,T,prewarpf)

Description The packed continuous SYSTEM matrix, csys, is converted into a discrete-time 
SYSTEM matrix, dsys, using a bilinear transformation with prewarping. The 
argument T is the sample time, in seconds. prewarpf is the prewarp frequency 
in rads/sec. prewarpf is an optional argument, and if omitted, or equal to zero, 
a bilinear transformation is performed instead.

The resulting discrete system, dsys, has the same transfer function at the 
continuous system, csys, at the prewarp frequency. Choosing a prewarp 
frequency close to the crossover frequency is often appropriate for a control 
system. Choosing a prewarp frequency too close to the Nyquist frequency (1/2T) 
can result in severe distortion at the lower frequencies. In the extreme, if 
prewarp is greater than or equal to π/T, the discrete system can be unstable.

Note that the transfer function is preserved at zero frequency with a bilinear 
transformation, hence having the input variable prewarpf equal to zero to 
indicate a bilinear transformation is therefore consistent.

Examples Create a second-order system with a resonance at 1 rad/sec.

a = [-.1,1;-1,-0.05]; 
b = [1;1]; c = [-0.5,0] 
sys = pck(a,b,c); 
minfo(sys)
system:2states1 outpus1 inputs
omega = logspace(-2,2,100); 
omega2 =[ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ]; 
omega = sort([omega omega2]); 
sys_g = frsp(sys,omega);
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Choose a sample frequency of 20 rads/sec and discretize the system with a 
bilinear transformation.

T = 2*pi/20; 
dsys = tustin(sys,T); 
dsys_g = frsp(dsys,omega,T); 
vplot('bode',sys_g,dsys_g,'-.'); 
title('Continuous system (solid), bilinear equivalent 
(dot-dash)')

The bilinear approximation is accurate up to about 2 rads/sec. This example 
shows the effect of choosing a higher prewarping frequency, specifically 5 rads/
sec.

prewarpf = 5; 
dsys2 = tustin(sys,T,prewarpf); 
dsys2g = frsp(dsys2,omega,T); 
vplot('bode',sys_g,dsys2_g,'-.'); 
title('Continuous system (solid), tustin equivalent (dot-dash)')
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Note the distortion in the frequency of the lightly damped peak. At 5 rads/sec 
both the continuous and discrete systems have the same transfer function.

sys_5 = vunpck(frsp(sys,5)); 
dsys2_5 = vunpck(frsp(dsys2,5,T)); 
err = abs(dsys2_5 - sys_5); 
fprintf('error at %g rad/sec is : %g ',prewarpf,err);
error at 5 rad/sec is : 1.155158e-17

This example highlights the distortion possible. If the frequency of the 
resonance had been critical to the design, a prewarp frequency of 1 rad/sec 
would have been more appropriate.

As an alternative, you can generate a filter/controller design using a warped 
frequency scale in the continuous domain. Then the transformation to the 
discrete domain would result in the correct transfer function at the frequencies 
of interest.

Algorithm The prewarped tustin transformation is based on the equation:
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where

Reference Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, Prentice Hall, 
New Jersey, 1975.

See Also dtrsp, frsp, samhld, tustin
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8unum, xnum, ynumPurpose unum returns the SYSTEM matrix input dimension

xnum returns the SYSTEM matrix state dimension

ynum returns the SYSTEM matrix output dimension

Syntax numinputs = unum(sys) 
numstates = xnum(sys) 
numoutputs = ynum(mat)

Description unum returns the input (column) dimension of SYSTEM, CONSTANT, and 
VARYING matrices.

xnum returns the state dimension of SYSTEM matrices.

ynum returns the output (row) dimension of SYSTEM, CONSTANT, and 
VARYING matrices.

Examples sys = sysrand(3,4,5); 
xnum(sys) 
ans = 

3 
unum(sys) 
ans = 

5 
ynum(sys) 
ans = 

4 
mat = crand(17,9); 
xnum(mat) 
ans = 

0 
unum(mat) 
ans = 

9 
ynum(mat) 
ans = 

17

See Also find, minfo, xtract, xtracti
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8vabs, vimag, vreal, vfloor, vceilPurpose Perform element-by-element operations on CONSTANT and VARYING 
matrices

Syntax matout = vabs(matin) 
matout = vimag(matin) 
matout = vreal(matin) 
matout = vfloor(matin) 
matout = vceil(matin)

Description This set of commands allows standard element-by-element operations on 
CONSTANT/VARYING matrices. These commands are identical to abs, imag, 
real, floor, and ceil but also work on VARYING matrices.

A general element-by-element command, vebe, allows all standard arithmetic 
MATLAB element commands that have only one input argument.

Examples Construct a complex VARYING matrix and find the magnitude of the entries 
and the real parts.

see(matin)
1 row 2 columns
iv = .2

0.2190 - 0.4379i0.6789 - 1.3577i
iv = .7

0.0470 - 0.0941i0.6793 - 1.3586i

vabs element-by-element absolute value of a VARYING matrix 

vimag element-by-element imaginary part of a VARYING matrix

vreal element-by-element real part of a VARYING matrix

vfloor element-by-element floor of a VARYING matrix

vceil element-by-element ceiling of a VARYING matrix



vabs, vimag, vreal, vfloor, vceil

8-196

see(vabs(matin))
1 row 2 columns
iv = .2
0iv = .7

0.10521.5190
see(vreal(matin))
1 row2 columns
iv = .2

0.21900.6789
iv = .7

0.04700.6793

Use pkvnorm to find the maximum element magnitude of the VARYING 
matrix.

pkvnorm(matin,inf)
1 row 2 columns
ans =

1.5190
This agrees with the maximum magnitude of matin(1,1) associated with the 
second independent variable.

See Also vdet, vdiag, vebe, veval
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8vdet, vdiag, vexpm, vrcondPurpose Calculate determinant, diagonal, matrix exponential and estimate of condition 
number of a CONSTANT or VARYING matrix

Syntax out = vdet(matin) 
out = vdiag(matin) 
out = vexpm(matin) 
out = vrcond(matin)

Description These commands operate on square, CONSTANT and VARYING matrices and 
they are identical to the MATLAB commands det, diag, exp, and rcond on 
CONSTANT matrices.

vdet of a square, VARYING matrix, returns matout, which is a VARYING 
1 × 1 matrix, containing the value of the determinant of matin at each 
independent variable value.

vdiag of a square, VARYING matrix, returns matout, which is a VARYING 
matrix of size min(size(matin)) × 1, containing the diagonal elements of 
matin at each independent variable.

vexpm of a square, VARYING matrix, returns matout, which is a VARYING 
matrix of the same size as matin, containing the matrix exponential of matin. 
The MATLAB command expm, which is called, uses a Pade expansion after 
scaling matin to calculate the exponential.

vrcond of a square, VARYING matrix, returns matout, which is an estimate of 
the condition number of a matrix.

Examples vdet and vrcond work similarly to their MATLAB counterparts, det and 
rcond, but on square VARYING matrices as shown below.

see(matin)
2 rows 2 columns
iv = 2.3

0.04750.3282
0.73610.6326

iv = 5.6
0.75640.3653
0.99100.2470

matout = vdet(matin);
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see(matout)
1 row 1 column
iv = 2.3

-0.2116
iv = 5.6

-0.1752
see(vrcond(matin))
1 row 1 column
iv = 2.3

0.1907
iv = 5.6

0.0848

See Also det, diag, expm, rcond
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8vebePurpose Perform element-by-element operations on CONSTANT and VARYING 
matrices

Syntax out = vebe('oper',matin)

Description The vebe function allows any single argument MATLAB element-by-element 
arithmetic command to operate on a VARYING matrix. The first input 
argument, oper, is the character string defining the MATLAB 
element-by-element command and matin is the VARYING matrix on which the 
command is applied. vebe calls the MATLAB eval command to execute the 
string command. Some standard MATLAB comands compatible with vebe are 
sin, abs, real, imag, and gamma.

Examples In this example of vebe, the real part of a matrix is found along with gamma of 
each matrix element.

see(matin)
3 rows 3 columns
iv = 4.2

1.0000 + 2.0000i   1.0000 + 2.0000i   1.0000 + 2.0000i
2.0000 + 4.0000i   2.0000 + 4.0000i   2.0000 + 4.0000i
3.0000 + 6.0000i   3.0000 + 6.0000i   3.0000 + 6.0000i

iv = 11.01

4.0000 +  8.0000i   4.0000 +  8.0000i   4.0000 +  8.0000i
5.0000 + 10.0000i   5.0000 + 10.0000i   5.0000 + 10.0000i
6.0000 + 12.0000i   6.0000 + 12.0000i   6.0000 + 12.0000i

matout = vebe('real',matin);
see(matout)
3 rows 3 columns
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iv = 4.2
1  1  1
2  2  2
3  3  3

iv = 11.01
4  4  4
5  5  5
6  6  6
see (vebe ('gamma ', matin))
3 rows 3 columns

iv = 4.2
1  1  1
1  1  1
2  2  2

iv = 11.01
  6    6    6
 24   24   24
120  120  120

See Also eval, vabs, vceil, veval, vfloor, vimag, vreal
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8veigPurpose Calculate eigenvalues and eigenvectors of CONSTANT and VARYING 
matrices

Syntax evals = veig(matin) 
[evecs,evals] = veig(matin) 
[evecs,evals] = veig(matin,'nonbalance') 
[evecs,evals] = veig(mat1,mat2)

Description veig is identical to MATLAB’s command eig, but works on VARYING 
matrices. veig solves for the eigenvalues (evals) and optionally the 
eigenvectors (evecs) of the input matrix matin. veig works only on square 
CONSTANT or VARYING matrices. Depending on the input arguments, the 
following operations are performed:

evals = veig(matin) returns a VARYING vector evals containing the 
eigenvalues of the VARYING matrix matin for each independent variable.

[evecs,evals] = veig(matin) returns the VARYING diagonal matrix evals 
and a square VARYING matrix evecs whose columns are the corresponding 
eigenvectors for each independent variable.

[evecs,evals] = veig(matin,'nobalance') is the same as the above 
command without performing a preliminary balancing step. Balancing a 
matrix, which has very small entries due to round off error, can lead to 
incorrect eigenvectors.

[evecs,evals] = veig(mat1,mat2) returns a VARYING diagonal matrix of 
generalized eigenvalues evals and the corresponding values of generalized 
right eigenvectors evecs associated with each independent variable. mat1 and 
mat2 can be CONSTANT or VARYING matrices. If either is CONSTANT, then 
that same matrix is used in the generalized eigenvalue solution for each 
independent variable. If they are both VARYING matrices, then they must 
have the same independent variables.
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Examples Create a 2 × 2 random VARYING matrix and find its eigenvalues.

see(matin)
2 rows  2 columns

iv = 0.1
0.9304   0.5269
0.8462   0.0920
iv = 0.4
0.6539   0.7012
0.4160   0.9103
evals = veig(matin);
see(evals)
2 rows1 column

iv = 0.1
  1.2996
 -0.2772

iv = 0.4
 0.2270
 1.3372

Using the same matrix and creating another two by two VARYING matrix, 
solve the generalized eigenvalue problem with these two matrices.

mat1 = matin; 
mat2 = vpck([4*eye(2);3*eye(2)],[.1 .4]); 
[evecs,evals] = veig(mat1,mat2);
see(evecs)
2 rows  2 columns

iv = 0.1
 0.8190   -0.3999
 0.5738    0.9166

iv = 0.4
 0.8542   0.7162
-0.5200   0.6979
see(evals)
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2 rows   2 columns

iv = 0.1
 0.3249   0
 0       -0.0693
iv = 0.4
 0.0757   0
 0        0.4457

Algorithm veig calls the MATLAB eig command.

See Also eig, indvcmp, svd, vsvd, vpoly, vroots
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8vevalPurpose Evaluate general functions of CONSTANT, SYSTEM, and VARYING matrices

Syntax [out1,out2,out3,...]= veval('oper',in1,in2,in3,...)

Description The veval function evaluates the command oper on the input matrices. veval 
works like feval but on collections of VARYING, CONSTANT, and SYSTEM 
matrices. 'oper' is a character string with the name of a MATLAB function 
(user written, or MATLAB supplied). The function is applied to each input 
argument at the independent variable’s values. Any CONSTANT or SYSTEM 
matrix is held at its value while the sweep through the independent variable is 
performed. veval is currently limited to 10 output arguments, and 13 input 
arguments. These are both easily changeable. veval can be used to generate 
and manipulate VARYING, SYSTEM matrices or VARYING matrices whose 
elements are themselves VARYING matrices. Arbitrary nesting of VARYING 
matrices is possible.

The veval function is very useful for rapid prototyping of customized 
commands employing VARYING matrices.

Examples To show the flexibility of veval, two random SYSTEM matrices are 
constructed. The poles of each SYSTEM are determined with the spoles 
command.

sys1 = sysrand(2,1,1); 
sys2 = sysrand(2,1,1);
spoles(sysl)
ans =
 0.1577
 0.7405
spoles(sys2)
ans =
 0.6273
-0.5661
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These two SYSTEM matrices are combined to form a VARYING matrix, vsys. 
The veval command is used to find poles of the VARYING matrix, which 
consists of the two SYSTEM matrices. A SYSTEM matrix is associated with 
each independent variable.

vsys = vpck([sysl;sys2],[1 2]);
vsyspoles = veval('spoles',vsys);
see(vsyspoles)
2 rows1 column

iv = 1
 0.1577
 0.7405

iv = 2
 0.6273
-0.5661

See Also eval, feval, vebe
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8vfft, vifft, vspectPurpose Calculate FFTs, inverse FFTs, and perform spectral analysis on VARYING 
matrices

Syntax yfreq = vfft(ytime,n) 
ytime = vifft(yfreq) 
P = vspect(x,m,noverlap,'window') 
P = vspect(x,y,m,noverlap,'window')

Description vfft implements the MATLAB fft command on VARYING matrix structures. 
A one-dimensional FFT of length n is performed on each element of the 
VARYING matrix ytime. It is assumed that the independent variable is in 
units of seconds. The independent variables are regularly spaced — only the 
first interval is used to determine the frequency scale. yfreq is returned with 
the independent variable, frequency, in radians/second.

vifft performs the inverse FFT. This is done with the MATLAB command 
ifft(yfreq) for each element of the VARYING matrix.

vspect is the VARYING matrix structure equivalent of the Signal Processing 
Toolbox command, spectrum. For algorithmic details, see the spectrum 
command. Note that vspect gives you the option of specifying a window for the 
data. For example, using the string hamming as the fifth argument generates a 
window with the command window = hamming(n);. hamming is an M-file in the 
Signal Processing Toolbox. You can use custom windows by specifying the 
name as the window argument.

In the case of the spectrum of a single signal, the command

P = vspect(x,m,noverlap,'window');

will return a VARYING matrix, P, containing the power spectral density of x. 
Note that x, and therefore P, can be a matrix of signals. In the case of the 
spectrum, and cross-spectrum, of two signals, the command

P = vspect(x,y,m,noverlap,'window');

will return a VARYING matrix, P, with the following five columns.

[Pxx Pyy Pxy Txy Cxy]
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These are given below.

The signal x, must be scalar (i.e., a one row, one column, VARYING matrix). y 
can be a vector signal. The row dimension of p is the same as that of y. vspect 
can do single-input, multiple-output (SIMO) identification. This is illustrated 
in the following example. Refer also to the example in the Tutorial chapter.

vfft, vifft, and vspect have not been optimized for speed. The appropriate 
row and column data is extracted from the VARYING matrices with the µ-Tools 
commands, sel and xtract. sbs and abv are used to create the final output.

Examples A single-input two-output system is generated as an identification example. 
This example is only a simple illustration of some of the frequency domain 
techniques available.

a1 = [-.1,1;-1,-0.05]; 
b1 = [1;1]; c1 = [-0.5,0]; 
sys1 = pck(a1,b1,c1); 
a2 = [-.1,0.5;-0.5,-0.1]; 
b2 = [1;1]; c2 = [-0.5,0]; 
sys2 = pck(a2,b2,c2); 
sys = abv(sys1,sys2); 
minfo(sys)
system:4 states2 outputs1 inputs

Now a random input signal is created.

t = [0:0.05:102.35]; 
u = siggen('0.5-rand(size(t))',t); 
minfo(u)
varying:2048 pts1 rows1 cols

Pxx Power spectral density of x

Pyy Power spectral density of y

Pxy Cross spectral density

Txy Complex transfer function between x and y

Cxy Coherence function between x and y
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The signal u is the input to the system. siggen is used to generate some random 
noise on the output signal, y.

y = 
madd(trsp(sys,u),siggen('[0.01*rand(size(t));0.025*rand(size(t))
]',t));
integration step size: 0.05
vplot(y) 
title('vspect example: output waveform with noise') 
xlabel('time: seconds')

The vspect command specifies a 1024 point window, with 512 points of 
overlap. A Hamming window is applied to the data.

P = vspect(u,y,1024,512,'hamming');
3 hamming windows in averaging calculation

Column 4 in P contains the complex transfer function estimate. Its magnitude 
is compared to the actual system transfer function.

omega = logspace(-2,2,100); 
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omega2 =[ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ]; 
omega = sort([omega omega2]); 
sys_g = frsp(sys,omega); 
vplot('liv,lm',sel(P,1:2,4),sys_g);
Warning: Data includes a number that is negative or zero.
The LOG of this results in NaN or Infinity and is not shown on 
plot.
title('vspect example: transfer function estimation ') 
ylabel('magnitude') 
xlabel('frequency: rad/sec')

Algorithm vfft, vifft, and vspectrum call the MATLAB commands fft and ifft.

Reference Ljung, L., System Identification: Theory for the User, Prentice Hall, New 
Jersey, 1987.

Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, Prentice Hall, 
New Jersey, 1975.

See Also fft, ifft, spectrum
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8vfindPurpose Unary find function across independent variable

Syntax [iv_value,iv_index] = vfind(condition,mat)

Description vfind is a unary find function that searches across independent variable 
values. The condition to be tested can be any valid MATLAB conditional 
statement, using the string mat to identify the matrix, and iv as the 
independent variable’s value. Both the values and indices of the applicable 
independent variables are returned.

Examples Suppose that matin is a VARYING matrix. In order to find those entries for 
which the product of the norm of the matrix, and the independent variable is 
greater than 2, use vfind as follows.

[iv_value,iv_index] = vfind('iv*norm(mat)>2',matin); 
matpropv = xtract(matin,iv_value); % extract by value 
matpropi = xtracti(matin,iv_index); % extract by index 
pkvnorm(msub(matpropv,matpropi)) % compare - both are the same

See Also find, xtract, xtracti 
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8vinterp, vdcmatePurpose Interpolate or decimate VARYING matrices

Syntax vout = vinterp(vin,stepsize,finaliv,order) 
vout = vinterp(vin,varymat,order) 
vout = vdcmate(vin,spacing)

Description In the first form, vinterp produces a regularly spaced interpolated version of 
the input VARYING matrix. The input arguments are

The end value for the independent variable may or may not be in the actual 
output. This is consistent with the usual MATLAB treatment of regularly 
spaced vectors. For example, consider

iv = [1:2:6];
disp(iv)

1 3 5
Note that the value of 6 does not appear in the vector.

In the second form, vinterp produces a VARYING matrix vout that is an 
interpolated version of vin. The independent variables of vout are the same as 
the independent variables of varymat. The input arguments are

vdcmate decimates the VARYING matrix vin, whose independent variable 
must be linearly spaced and in ascending order. If spacing has a value of n, 
then the output contains only the matrices corresponding to every nth 
independent variable of the input. If no spacing is specified, the default is 10.

stepsize independent variable stepsize

finaliv end value for independent variable (Optional: the default is 
the final independent variable in the input)

order type of interpolation (optional, default = 0)
0  zero-order hold
1  linear interpolation

varymat VARYING matrix with desired independent variables

order type of interpolation (optional, default = 0)
0  zero-order hold
1  linear interpolation
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Examples siggen creates a sinewave. This is effectively sampled by vdcmate and then 
interpolated by vinterp. Note that the default interpolation is a zero-order 
hold, giving a stair-step output, yi. If a linearly interpolated output were 
specified, it would look identical to yd since the MATLAB plot command 
displays a linear interpolation.

timebase = [0:0.005:20]; 
y = siggen('sin(2*pi*t)',timebase); 
minfo(y)
varying:4001 pts1 rows1 cols
yd = vdcmate(y,210); 
minfo(yd)
varying:20 pts1 rows1 cols
yi = vinterp(yd,0.005,20,0); 
minfo(yi)
varying:4001 pts1 rows1 cols
axis([0,20,-1.5,1.5]) 
vplot(y,yd,yi) 
title('vdcmate/vinterp example: undersampled sine wave') 
xlabel('time: seconds')

See Also dtrsp, sort, sortiv, tackon, trsp
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8vldiv, vpinv, vrdivPurpose Determine left division, pseudo-inverse and right division of a CONSTANT or 
VARYING matrix

Syntax out = vldiv(mat1,mat2) 
out = vpinv(mat,tol) 
out = vrdiv(mat1,mat2)

Description These commands operate on VARYING matrices and they are identical to the 
MATLAB commands \, pinv, and / on CONSTANT matrices.

vldiv of a VARYING matrix returns out, which is a VARYING matrix, 
containing the value of the left division (mat1(i)mat2(i)) at each independent 
variable value. vldiv is identical to the MATLAB command \ for CONSTANT 
matrices.

vpinv of a VARYING matrix returns out, which is the pseudo-inverse of mat at 
each independent variable. out is of the same dimension as vcjt(out), and 
satisfies mat = mmult(mat,out,mat). tol is used within the svd routine to 
determine zero singular values. The default value of tol is 1e–12. vpinv is 
identical to the MATLAB command pinv for CONSTANT matrices.

vrdiv of a VARYING matrix returns out, which is a VARYING matrix, 
containing the value of the right division (mat1(i)/mat2(i)) at each 
independent variable value. vrdiv is identical to the MATLAB command / for 
CONSTANT matrices.

See Also \, /, pinv, vinv, vsvd
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8vpck, vunpck, var2conPurpose Pack and unpack a VARYING matrix and convert from a VARYING matrix to 
a CONSTANT

Syntax matout = vpck(matin,indv) 
[varydata,rowpoint,indv,err] = vunpck(mat) 
[matout,ivval] = var2con(mat,desiv)

Description The data structure for a VARYING matrix consists of the sampled matrix 
values stacked one upon each other, and the particular independent variable 
values. vpck places the stacked data from the input variable, matin, and the 
vector, indv, which represents the independent variable values, into a new 
matrix, matout, with the correct structure and data structure of a VARYING 
matrix.

The command vunpck performs the inverse operation; unpacking a VARYING 
matrix into stacked data varydata, row pointers rowpoint, a vector of 
independent variables indv, and an error flag err. The value of rowpoint(i) 
points to the row of data that corresponds to the first row of the ith value of 
matin. indv is a column vector with the independent variable values. The error 
flag is normally 0 but it is set to 1 if the input matrix is a SYSTEM.

var2con converts VARYING matrices to CONSTANT matrices. If there is one 
input argument, mat, and it is a VARYING matrix, then the output matout is 
the CONSTANT matrix in mat associated with the independent variable’s first 
value. The optional second output argument is this independent variable’s 
value. If two input arguments are used, then the first is a VARYING matrix, 
and the second is a desired independent variable’s value. The command finds 
the matrix in mat whose independent variable’s value is closest to desiv, and 
returns this matrix as a CONSTANT matrix.
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Examples Construct a VARYING matrix from a CONSTANT matrix and a vector of 
independent variables.

disp(matin)
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

time = [.1 2.3 5.6]'; 
disp(time)

1.0000e-01
2.3000e+00
5.6000e+00

matout = vpck(matin,time); 
see(matout)
2 rows 3 columns

iv = 0.1
1 1 1
2 2 2

iv = 2.3
3 3 3
4 4 4

iv = 5.6
5 5 5
6 6 6

See Also pck, unpck, xtract, xtracti
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8vplotPurpose Plot multiple VARYING matrices on the same graph

Syntax vplot('plot_type',vmat1,vmat2,...) 
vplot('plot_type',vmat1,'linetype1',...) 
vplot('bode_l',top_axis_limits,bottom_axis_limits,vmat1,vmat2,...)

Description The vplot command calls the standard MATLAB plot command for plotting. 
The optional plot_type argument specifies the type of graph, and selects 
between the various logarithmic or linear graph types. The plot_type 
specification choices are

If no plot_type specification is given the default is 'iv,d'.

The bode_l and bode_gl plot_type specifications require that the second and 
third arguments are the desired axis limits for the top and bottom plots. These 
are simply the 1× 4 vectors to be used as arguments for the axis command.

iv,d matrix (decimal) vs. independent variable

iv,m magnitude vs. independent variable

iv,lm log(magnitude) vs. independent variable

iv,p phase vs. independent variable

liv,d matrix vs. log(independent variable)

liv,m magnitude vs. log(independent variable)

liv,lm log(magnitude) vs. log(independent variable)

liv,p phase vs. log(independent variable)

ri real vs. imaginary (parametrized by independent variable)

nyq real vs. imaginary (parametrized by independent variable)

nic Nichols chart

bode Bode magnitude and phase plots

bode_g Bode magnitude and phase plots with grids

bode_l Bode magnitude and phase plots with axis limits

bode_gl Bode magnitude and phase plots with grids and axis limits
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The remaining arguments of vplot take the same form as the MATLAB plot 
command. Line types (for example,'+', 'g-.', or '*r') can be optionally 
specified after any VARYING matrix argument.

There is a subtle distinction between CONSTANT and VARYING matrices 
with only one independent variable. A CONSTANT is treated as such across all 
independent variables, and consequently shows up as a line on any graph with 
the independent variable as an axis. A VARYING matrix with only one 
independent variable will always show up as a point. You may need to specify 
one of the more obvious point types in order to see it (e.g., '+', 'x’, etc.).

Examples Two SISO second-order systems are created, and their frequency responses are 
calculated for each over different frequency ranges.

a1 = [-1,1;-1,-0.5];
b1 = [0;2]; c1 = [1,0]; d1 = 0; 
sys1 = pck(a1,b1,c1,d1); 
minfo(sys1)
system:2 states1 outputs1 inputs
a2 = [-.1,1;-1,-0.05]; 
b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1; 
sys2 = pck(a2,b2,c2,d2); 
minfo(sys2)
system:2 states1 outputs1 inputs
omega = logspace(-2,2,100); 
sys1_g = frsp(sys1,omega); 
omega2 = [ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ]; 
omega2 = sort(omega2); 
sys2_g2 = frsp(sys2,omega2);

A VARYING matrix with a single independent variable is also created. Note 
the distinction between this and the CONSTANT matrix in the subsequent 
plots.

rspot = vpck(sqrt(2)-sqrt(2)*i,2); 
minfo(rspot)
varying:1 pts1 rows1 cols

The following plot uses the 'liv,lm' plot_type specification. Note that the 
CONSTANT matrix is seen over all values of the independent variable. This is 
only true because it is displayed as a line type. If it were displayed as a point, 
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then one would see points only on each of the side axes. The single valued 
VARYING matrix (rspot) is shown only at the appropriate independent 
variable value.

vplot('liv,lm',sys1_g,'b-.',[1+i;0.5-0.707*i],'g--',... 
rspot,'r*',sys2_g2);
xlabel('log independent variable') 
ylabel('log magnitude') 
title('plot_type specification: liv,lm')

You can customize vplot to select the type of axis uses for log magnitude and 
phase plots. The default is to plot the log magnitude on a base 10 scale and plot 
phase in radians. It is a simple modification to select a dB scale and phase in 
degrees. Documentation of the modification is provided in the M-file vplot. You 
can copy the command vplot to a private directory (for example, matlab/
toolboxes/mu_cmds on UNIX systems) and make the appropriate 
modifications.
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Several control design plot functions are also provided. These are bode, nic, 
and nyq, for Bode, Nichols, and Nyquist, respectively. The following three plots 
demonstrate each of these commands.

vplot('bode',sys1_g,'b',sys2_g2,'g+'); 
title('plot_type specification: bode')

The log magnitude and phase axes are labeled automatically. You can change 
these labels. Documentation for doing this is in the Help facility for vplot.

vplot('nic',sys1_g,'b-.',[1+i;0.5-0.707*i],'go',rspot,... 
rspot,'r*',sys2_g2);
title('plot_type specification: nic') 
xlabel('phase (degrees)') 
ylabel('log magnitude (dB)') 
title('plot_type specification: nic (Nichols Chart)')
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The default axis scale selection for the Nichols plot is dB versus phase in 
degrees. This corresponds to the usual choice for this plot and can be different 
from the axis scale selection for bode, liv, lm, liv, p, etc. Again you can change 
this if required.

vplot('nyq',sys1_g,'b-.',[1+i;0.5-0.707*i],'go',rspot,... 
xlabel('nyquist diagram (real)') 
vplot('liv,lm',sys1_g,'b-.',[1+i;0.5-0.707*i],'g--',... 
rspot,'r*',sys2_g2);
ylabel('imaginary') 
title('plot_type specification: nyq')

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

-350 -300 -250 -200 -150 -100 -50 0

oo

oo

**

phase (degrees)

lo
g 

m
ag

ni
tu

de
 (

dB
)

axis specification: nic (Nichols Chart)



vplot

8-221

See Also plot
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8vpoly, vrootsPurpose Find coefficients and roots of a characteristic polynomial from a CONSTANT 
or VARYING matrix

Syntax matout = vpoly(matin) 
vecout = vpoly(vecin) 
vecout = vroots(vecin)

Description vpoly forms an n + 1 element VARYING row vector whose elements form the 
coefficients of the characteristic polynomial, det(sI – matin(i)), if matin is an 
n × n VARYING matrix. The coefficients are ordered in descending powers of s. 
If the input is a column vector vecin containing the roots of a polynomial, 
vpoly(vecin) returns a VARYING row vector whose elements are the 
coefficients of the corresponding characteristic polynomial.

vroots returns as a VARYING column vector vecout whose elements are the 
roots of the polynomial at each independent variable, if vecin is a VARYING 
row vector containing the coefficients of a polynomial. vpoly and vroots are 
identical to the MATLAB poly and roots commands, but also work on 
VARYING matrices.

Examples Given a 3 × 3 VARYING matrix, find the characteristic polynomial and its 
roots. Compare this to finding the eigenvalues of the input matrix via veig.

see(matin)
3 rows      3 columns
iv = 0.1
1   2   3
4   5   6
7   8   9
iv = 0.4
10   11   12
13   14   15
16   17   18
matout = vpoly(matin);
see(matout)
1 row      4 columns
iv = 0.1
l.0000e+00    -1.5000e+01    -1.8000e+01    -1.4483e-14
iv = 0.4
l.0000e+00    -4.2000e+01    -1.8000e+01     1.2818e-14
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vecout = vroots(matout);
see(vecout)
3 rows       1 column
iv = 0.1
 1.6117e+01
-1.1168e+00
-8.0463e-16

iv = 0.4
 4.2424e+01
-4.2429e-01
7.1212e-16
evals = veig(matin);
see(evals)
3 rows        1 column

iv = 0.1
 1.6117e+01
-1.1168e+00
-8.0463e-16
iv = 0.4
 4.2424e+01
-4.2429e-01
 7.1212e-16

Algorithm vpoly and vroots call the MATLAB poly and roots commands.

See Also eig, poly, roots, veig



vsvd, vrho, vschur

8-224

8vsvd, vrho, vschurPurpose Perform a singular value decomposition, spectral radius and Schur 
decomposition of a CONSTANT or VARYING matrix

Syntax s = vsvd(matin) 
[u,s,v] = vsvd(matin) 
out = vrho(matin) 
t = vschur(matin) 
[u,t] = vschur(matin)

Description vsvd performs a singular value decomposition on a VARYING matrix. It is 
identical to MATLAB’s svd routine, and will work on CONSTANT matrices as 
well. If there is one output argument, the output is a VARYING matrix with 
the singular values of matin at each point. If there are three output arguments, 
[u,s,v], then u is a VARYING matrix with the left singular vectors, s is a 
VARYING matrix with the singular values, and v is a VARYING matrix with 
the right singular vectors.

vrho finds the spectral radius, max(abs(eig(xtracti(matin,i)))), at each 
independent variable of a VARYING matrix.

vschur computes the Schur form of a VARYING matrix for each independent 
variable. It is identical to the MATLAB schur command, but also works on 
VARYING matrices. Given two output arguments, vschur returns two 
VARYING matrices u and t. t corresponds to the Schur form matrix and u is a 
VARYING unitary matrix such that

matin = mmult(u,t,vcjt(u))

Examples Construct a random VARYING matrix and find its singular values.

see(matin)
2 rows 2 columns

iv = 0.1
0.93040.5269
0.84620.0920

iv = 0.4
0.65390.7012
0.41600.9103

[u,s,v] = vsvd(matin);
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see(u)
2 rows      2 columns
iv = 0.1
0.7884      0.6152
0.6152     -0.7884

iv = 0.4
0.6909     -0.7229
0.7229      0.6909
see(s)

iv = 0.1
1.3400      0.2689

iv = 0.4
1.3681      0.2219
see(v)
2 rows      2 columns

iv = 0.1
0.9359     -0.3522
0.3522      0.9359

iv = 0.4
0.5501     -0.8351
0.8351      0.5501

Algorithm vrho, vschur, and vsvd call the MATLAB commands svd, eig, and schur

See Also eig, hess, pkvnorm, mu, qz, schur, svd, veig, vnorm
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8vzoomPurpose Freeze plot axes by clicking mouse twice in plot window

Syntax vzoom('axis')

Description vzoom uses the MATLAB functions ginput and axis to freeze the axes by 
clicking the mouse twice in the plot window that defines minimum and 
maximum values for x and y. The clicking may be done in any order.

The axis argument specifies the type of graph, and can select between the 
various logarithmic or linear graph types, just as in vplot. Unlike vplot, the 
axis argument is not optional. The axis specification choices are

Note that the axis specification is the same as for vplot, with the addition of 
the last four possibilities. The function is not defined for 'bode'.

Examples The command vzoom(’liv,m’) would be equivalent to

[x,y] = ginput(2); 
axis([log10([min(x) max(x)]) min(y) max(y)]);

An example of the use of vzoom is
tf = frsp(nd2sys([ 1 .1],[.1 1]),logspace(-2,2,100)); 
vplot('nic',tf); vzoom('nic'); vplot('nic',tf); axis;

See Also axis, ginput, vplot

'iv,d', 'iv,m','iv,p' decimal, magnitude, or phase vs. independent 
variable

'liv,d', 'liv,m','liv,p' decimal, magnitude, or phase vs.

'iv,lm'
'liv,lm'

log(magnitude) vs. independent variable 
log(magnitude) vs. log(independent variable)

'ri', 'nyq' real vs. imaginary (parametrized by 
independent variable)

'nic' Nichols chart

'ss' standard decimal

'll' log-log

'ls' semilogx 

'sl' semilogy 
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8wsguiPurpose A graphical user interface for the MATLAB workspace

Syntax wsgui

Description wsgui is a graphical user interface (GUI) for the MATLAB workspace. It allows 
you to view, delete, and save variables in the workspace, drag these variables 
to other µ-Tools GUIs, dkitgui and simgui, drop boxes, and export variables 
from the µ-Tools GUI interfaces to the MATLAB workspace.

The wsgui Workspace Manager window appears as shown on the following 
page.

Each time Refresh Variables is pressed, the MATLAB command who is 
executed, and minfo is run to determine the variable type and dimension. This 
information is displayed in the main scrollable table. The date and time of the 
last refresh are displayed below the button. 
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The scrollable table can be moved up/down one page by pressing above/below 
the slider. Pressing the arrows at the end of the slider moves the table one line.

A filter is used to make viewing of a reduced number of selections easy. The 
Prefix, Suffix and matrix type filters are on the bottom of the scrollable 
table. The matrix type filter is a pop-up menu to the right of Suffix. The 
Custom filter, which is shown if * is pressed, allows you to create a more 
complicated selection criteria. Press the pushbutton marked with an *; this 
pushbutton is to the right of the pop-up menu, to switch to the custom filter. A 
detailed description of wsgui is provided in the “Workspace User Interface Tool: 
wsgui” section in Chapter 6.

Examples An example of using wsgui is shown in the “Workspace User Interface Tool: 
wsgui” section in Chapter 6.

See Also clear, save, who
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8wcperfPurpose Computes upper and lower bounds for the worst-case gain of a linear system 
subjected to structured, bounded, LFT perturbations. Also computes 
worst-case structured perturbation of a specified H∞

Syntax [deltawc,lowbnd,uppbnd] = wcperf(Mg,uncblk,alpha,npts);

Description The command wcperf is associated with the block diagram

where ∆ has block structure as defined by ∆, which is described via the matrix 
uncblk. The worst-case performance curve, ƒ(α), is defined as

Both lower and upper bounds for ƒ are returned as VARYING matrices in 
lowbnd and uppbnd. Each VARYING matrix is guaranteed to have at least npts 
values of the independent variable α, spread uniformly between 0 and the 
stability limit.

The first output argument, delta_wc, is the “worst-case” perturbation from ∆ 
with norm equal to the value of alpha. delta_wc has the block-diagonal 
structure associated with uncblk, and causes the LFT FU (M,∆wc) to have norm 
equal to the value of lowbnd associated with the independent variable value α 
= alpha.

See Also dypert, mu

f α( ) := max FU M ∆,( ) ∞
∆ $∆,∈ maxwσ ∆ jω( )( )ðα
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8xtract, xtractiPurpose Extract a specified portion of a VARYING matrix

Syntax [matout,err] = xtract(mat,iv_low,iv_high) 
[matout,err] = xtract(mat,ivdes) 
[matout,err] = xtracti(mat,indvindex)

Description xtract extracts a portion of a VARYING matrix. The independent variable 
associated with a VARYING matrix monotonically increases (like frequency or 
time). In the first form, xtract is called with three input arguments: a 
VARYING matrix, a lower bound iv_low, and an upper bound iv_high. The 
matrix values associated with any independent variables between iv_low and 
iv_high are extracted, and returned as a VARYING matrix. In the second 
form, xtract is called with two arguments. The second argument is a vector of 
desired independent variable values. For each desired value, the matrix from 
mat with the closest independent variable value (in absolute value) is 
extracted.

xtracti extracts the value of the VARYING matrix at the specific indices 
indvindex of the independent variable. Hence indvindex should be an array of 
positive integers. The extracted matrix is returned as a VARYING matrix.

Examples Extract ranges of independent variable from a VARYING matrix.

see(mat)
2 rows2 columns

iv = 0.1
2.9703e+00 - 2.9703e-0li5.9406e+00 - 5.9406e-0li
3.9604e+00 - 3.9604e-0li7.9208e+00 - 7.9208e-0li

iv = 0.4
2.5862e+00 - 1.0345e+00i5.1724e+00 - 2.0690e+00i
3.4483e+00 - 1.3793e+00i6.8966e+00 - 2.7586e+00i

iv = 0.9
1.6575e+00 - 1.4917e+00i3.3149e+00 - 2.9834e+00i
2.2099e+00 - 1.9890e+00i4.4199e+00 - 3.9779e+00i
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matl = xtract(mat,.3,.8);
see(matl)
2 rows2 columns

iv = 0.4
2.5862e+00 - 1.0345e+00i5.1724e+00 - 2.0690e+00i
3.4483e+00 - 1.3793e+00i6.8966e+00 - 2.7586e+00i

matl = xtracti(mat,2);
see(matl)
2 rows2 columns

iv = 0.4
2.5862e+00 - 1.0345e+00i5.1724e+00 - 2.0690e+00i
3.4483e+00 - 1.3793e+00i6.8966e+00 - 2.7586e+00i

See Also sel, var2con, vpck, vunpck, vfind
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