ANVIL 4.0

Annotation of Video and Spoken Language

USER MANUAL

Michael Kipp

Graduate College for Cognitive Science
University of the Saarland
and
German Research Center for Artificial Intelligence (DFKI)
Germany
kipp@dfki.de

http://www.dfki.de/ kipp/anvil

April 9, 2003

Abstract

Anvil is a research tool for annotating digital video (QuickTime or AVI
files) for research in areas like Linguistics, Human-Computer Interac-
tion, Gesture Research or Film Studies. It provides a graphical user
interface for creating annotation elements on temporal, hierarchical,
completely user-defined layers. These elements are treated as complex
objects that have typed attributes such as strings, booleans or token
sets. Cross-level and within-level linkage can be realized through spe-
cial attribute types. Non-temporal entities like relations, locations or
objects can be annotated, too, and be linked with temporal elements.
For managing multiple annotations Anvil offers the Project Tool that
allows browsing and searching across annotations as well as exporting
data to external statistics software like SPSS or Statistica. Anvil’s
platform-independence, generic approach, user-friendliness and flexi-
bility makes it a highly effective tool for many research areas.

Contents

1

Introduction

1.1 Background o
1.2 How to Use This Manual
1.3 Installation

Making Video Files

2.1 Equipment e
2.2 Processing o
Concepts

3.1 Tracks L
3.2 GroupsS. - - v o i e e e
3.3 Sets
3.4 File Organization
User Interface

4.1 Main Windowo
4.2 Annotation Board L.
4.3 Element Window
4.4 Element Edit Window
Working in Anvil

5.1 Preliminaries L
5.2 Creating Annotations,
5.3 Adding Track Elements
5.4 Manipulating Track Elements
5.5 Playinga Segment
5.6 Navigation and Short-cuts
5.7 Customizing Anvil L.
5.8 Registering Plug-ins
5.9 Printing Annotations
5.10 Exporting Text L.
5.11 Generating a Coding Manual
Importing Data

6.1 PRAAT Transcription
6.2 PRAAT Intensity and Pitch
6.3 XWaves Speech Transcription
6.4 RSTtool Annotation
Working with Projects

7.1 Creating, Opening And Browsing a Project
7.2 Exporting Tracks oL
7.3 Finding Track Elements

N O ot

8 Writing a Specification File
8.1 File Structure
8.2 Tracksand Groups L.
83 Sets
8.4 Attributes
8.5 Display Options L
8.6 GUI Customization
8.7 Documentation Lo Lo

9 Other Annotation Projects
10 Acknowledgements

A Features of Anvil 4.0

B Anvil Color Tables

C Specification File Sample

D Annotation File Sample

33
33
33
35
35
38
39
40

41

44

46

48

49

51

1 Introduction

1.1 Background

Anvil is a research tool for the analysis of digitized audiovisual data! (Kipp,
2001b). Tt allows you to transcribe human behavior and other visually ac-
cessible information in temporal alignment with speech and other auditory
signals. Tt thus frees researchers in Anthropology, Gesture Studies, Psychol-
ogy etc. from the need to work with video recorders and note-pads, taking
down timestamps or frame numbers with pencil and paper.

The first aim of Anvil is to ease the transcription process itself by making
the encoding of elements (behavioral units) as intuitive and fast as possible.
The range of these elements, the actual annotation scheme, can be freely
defined by the user. Second, Anvil was to provide the most informative view
on the ongoing transcription. In our case, a transcription is an encoding of
temporally parallel information, like speech and gesture, on multiple layers.
This has often been compared to the way instruments are instructed in par-
allel in a musical score (“Partitur” in German). The most informative view
on such a transcription looks very much like a musical score: layers are listed
one below the other, running from left to right. Elements are depicted as
boxes (rectangles) whose left and right borders correspond to their start and
end points on a common time axis, the width thus being the duration of the
element. Adding labels and colors to these bars allows intuitive comprehen-
sion of such a behavioral “Partitur” where temporal relationships, categories
and durations can be captured at a glance.

On a technical side, Anvil relies on two word-wide standards: The Java
programming language and the XML markup language. Thus, Anvil is com-
pletely written in Java and the video processing package JMF (Java Me-
dia Framework). Therefore, Anvil can run on any platform, be it Windows,
Linux, Solaris or Macintosh?. Anvil’s files are all based on XML which means
that Anvil users can exploit the many tools that exist for the manipulation
and transformation of XML files. Did you know that almost every In-
ternet Browser (Netscape, Internet Explorer) can read and display
XML files? Try it with your Anvil annotation and specification
files!

Anvil does not provide convenient facilities to transcribe speech or other
phonetic data like intonation. It is also not planned to include such capabili-
ties because there are very good tools around for this (PRAAT, XWaves) and
sound/video transcription do not really mix very well in a single tool because
temporal granularity is much finer in speech transcription (22,000 frames per
second) than in video transcription (25 frames per second). Anvil does also

LCommon video formats like AVI and QuickTime are supported. See the Anvil website
under http://www.dfki.de/~kipp/anvil for more information on formats and codecs.

2Anvil has been seen running on a Macintosh but T do not regularly check how easy
it is to install there. For all other platforms (Windows, Linux, Solaris) installing Anvil is
very easy.

not provide any kind of statistical analysis of the annotated data. This has
to be done using other software like SPSS or Statistica (both commercial
products).

Anvil was written as part of a PhD project on nonverbal communication
at the University of the Saarland (Kipp, 2001c, and Kipp, 2001a) on a grant
by the DFG (Deutsche Forschungsgemeinschaft) and builds on experiences
with mass corpus annotation of dialogue acts within the speech-to-speech
machine translation project VERBMOBIL (Alexandersson et al., 2000). It
has been actively used to encode video samples of a German TV show with
nonverbal behaviour and linguistic information.

The system was developed on a Pentium IIT (500 MHz) with 256 MB
RAM, and successfully tested on Windows (98, NT, 2000, XP) and LINUX
platforms. Since it is written in Java2 with JMF 2.1.1 (Java Media Frame-
work) it should run on any platform that has those components installed.

This document is meant to serve as an installation guide, user manual and
technical specification in one. Since I am aware of the fact that potential users
of Anvil come from a wide range of fields, some more, some less familiar with
certain concepts, I included notes in italics which are not of urgent general
interest but may prove to useful to the more technical minded readers. If
anything remains unclear, please send questions, remarks and suggestions to
kipp@dfki.de

1.2 How to Use This Manual

This manual tries to be as complete as possible and may, in its current shape
and size, deter you from reading anything at all. So let me give some hints
how to read this manual for exploring Anvil most efficiently. For users familiar
with Anvil I recommend looking at Appendix A to find out what features are
new to Anvil 4.0.

If you have never worked with Anvil before you may want to try this
order:

1. Read the next Section 1.3 “Installation” for the installation of Anvil.

2. Download the sample files on the Anvil download page and open them
in Anvil to get used to navigation and manipulation of annotations.
Look at Section 4 “User Interface” if you have trouble understanding
the interface.

3. Proceed with Section 5 “Working in Anvil” where you will learn how
to create an annotation with the predefined schemes.

4. Look at Section 3 “Concepts” to learn about the principal structure of
annotations.

5. Read Section 8 “Writing a Specification File” carefully to implement
your own annotation scheme. It is a good idea to take the predefined

samples in the “spec” directory as a starting point and to manipulate
those step by step. Remember to give a new file name to each new
specification that you create so that you can always get back to older
versions.

6. Once you have coded a number of files you may want to consider the
project functions outlined in Section 7 “Working with Projects”.

1.3 Installation

This section explains how to install Anvil on Windows (95, 98, NT, 2000,
XP) machines®. Before installing Anvil however, there are two other software
systems that Anvil needs: Java2 and JMF (Java Media Framework). Both
systems are public domain, i.e. they are free and can be downloaded under
the addresses given on the Anvil download page. To install them, copy the
respective files on your hard disk and execute them. An installation dialogue
will guide you through the process. When asked to restart your computer,
please do so. Otherwise, there could be problems with Anvil’s installation.

Windows 95/98/NT users will also need the WinZip software which is
already installed on most machines (have a look in your “start” menu). If
not, you can download it from http://www.winzip.com. In Windows XP
this software is in-built.

Java2 is a platform-independent programming language. Anwvil is completely
written in Java and therefore runs on any machine supporting Java. The
“2” in Java?2 refers to the latest language specification of Java. To run Java
programs you need to install a Java Virtual Machine, such as the one offered
(for free) by Sun’s Java Development Kit (JDK) version 1.4 or higher. This
JDK 1.4 software is what you need to download and install before installing
Anuvil.

JMF (Java Media Framework) is an extension for the Java language pro-
vided by Sun. It enables the use of video and sound facilities in Java. JMF is
offered in a stable version for Windows and Solaris; for Linuz there is a beta
version provided by Blackdown (all free). It is yet unclear how stable JMF
(in the “all-Java” version) runs on Macintoshes. For Anwil, I recommend
to install JMF wversion 1.2.2 or higher.

Having successfully installed Java2 and JMF, you can proceed with installing
Anvil. First, create a directory, henceforth called “Anvil directory”. This
could be, on a Windows computer:

C:\program files\Anvil 4.0

Copy the file anvil40-package.zip to this directory.

3Unix (Solaris, Linux) users can have a look at the README file. Anvil does run under
Linux and should run under Solaris. Whether it works on a Mac is unsure.

Second, start WinZip and open anvil40-package.zip in it. Extract all files
to the Anvil directory. Windows XP users simply click on the anvil40-package
file and Windows will show the contents. Copy all the files/directories that
you see into the Anvil directory.

Finally, execute install.bat, located in the Anvil directory. The response
will be a window that asks you to input the amount of working memory
(RAM) of your computer (e.g. “512MB” or “1.4GB”). Anvil then informs
you of successful installation. You will now find the new file anvil.bat in
the Anvil directory. By executing it you will start Anvil.

The file install.bat can be called again if you wish to adapt the working
memory. If ever you run into memory problems (an “out of memory” problem
signalled by Anvil), then come back to install.bat and try a bigger number,
even exceeding your true working memory.

2 Making Video Files

Since many people work with analogue video (e.g. VHS) to start with, T will
give some guidelines how to get such videos into a digital form that can be
used with Anvil. The process of digitizing video is also called “capturing”.

2.1 Equipment

With the following kind of equipment you will be able to digitize analogue
videos:

e Reasonably fast PC (800 MHz or more)
e TV card (e.g. by Pinnacle or WinTV, costs around $100)

e Video editing software like “VirtualDub”* (free!), “Premiere” (Adobe)
or “Final Cut Pro”

e VCR (normal video tape recorder/player)

Macintosh users can visit http://talkbank.org/digitalvideo for detailed
information on video digitization with a Mac. Mac users can work with a
“hardware converter box” instead of a TV card (e.g. Sony sells them for
around $500) in connection with the firewire interface.

4http://www.virtualdub.org

2.2 Processing

I highly recommend working out one first “perfect” digitization with a very
small sample that turns out to be suitable for Anvil (see step 5) before starting
to digitize your whole video collection. Take notes of how you set the options
of the video software (see step 3) for later reference. You may need some
experimentation there.

1. Plug the output of your VCR to your computer’s TV card. Best to
use a SCART (VCR) to “composite” cable. The “composite” side has
three chinch plugs (red and black for audio, yellow for video).

2. Start your video software and go to ”capture” mode (in Premiere this
is File > Capture > Movie Capture).

3. Make some adjustments (try clicking the right mouse button while over
the capture screen to get a menu) regarding the format you want to
digitize your video to. For Anvil I recommend the following:

e SCREEN SIZE: I recommend 384x288 (European TV half size)
or 320x240 (American TV half size) — double values (768x576 or
640x480) if you really need the detail but be aware that you need
a very powerful computer to cope with the increased data pro-
cessing, and also, a large video pane leaves little room for Anvil’s
Annotation Board (see p. 14).

e CAPTURE FORMAT: set it to Video for Windows (AVI) or Quick-
Time (MOV)

e CopEC: Cinepak or Intel Indeo 5.0 (for other supported codecs
follow the link on the Anvil homepage/download page)

Leave other options (sound etc.) as they are. You can play around with
things like ”video compression rate”. Such adjustments depend on the
TV card, software, video format, and codec you use.

4. Insert your analogue video tape into the VCR and play it. You will
see it in your software, too. Then, you can press the “Record” button
anytime you like to start digitizing the portion you want. Note that
your computer usually does not react immediately to your signal so
press it somewhat in advance. Stop recording with the Escape key or
pressing a mouse button, depending on your software.

5. Save the recorded video to a file (in Premiere: File > Save) and check
the size of the file. It can range from 15 to 30 MB per minute of recorded
video. If the size is much larger, play around with recording options
(rate of compression) to arrive at a satisfying result. Also try loading
the file to Anvil. It it does not work then Anvil does not support the
codec. Try again with a different one.

3 Concepts

I will start out by presenting Anvil’s underlying framework for annotations
which is designed to accommodate a number of possible schemes. A closely
related topic, file organization, will be treated at the end of this section.

Annotation
‘ 0.%

Track
[o.
Element

Start End Attribute;Value

Figure 1: Annotation object model.

Anvil’s overall design is object-oriented, the largest unit being an annota-
tion. This annotation object holds a number of tracks. Each track represents
a type of entity you want to encode (words, eye blinks, gestures) and con-
tains the entities themselves, the so-called elements. Their contents can be
specified by an arbitrary number of attribute-value pairs. Figure 1 shows the
abstract object model®.

The annotation depends on a specification file which contains a formal
description of tracks, attributes, possible values etc.

3.1 Tracks

A track is a container for one type of information. Examples are: words
(transliteration), deictic gestures, head nods. Each track can contain a num-
ber of track elements, e.g. a single word or a single head nod. These elements
are viewed as objects that can not only be labelled but that can hold a num-
ber of attribute-value pairs. Thus, a word in the transliteration track could
have attributes like “emphasis” or “loudness”. Each attribute expects values
of a certain type which can be a set of user-defined tokens. For instance,
the attribute “emphasis” has a set of possible labels: strong, moderate and
reduced. Other value types are: String, Boolean, Number, MultiLink and
ReciprocalLink (see Sections 8 and 5.3 for details). On top of attribute-value
pairs, an arbitrary number of comment lines can be added to each track
element for spontaneous, free-form remarks.

5This figure ignores groups for simplicity.

10

There are three different types of tracks. What the example tracks above
had in common is that they contain track elements with a start and end
time relating to the video being analyzed. This type of track is called a
primary track. The other two types are secondary types because its elements
relate to elements of another track (called the reference track). So-called
singleton tracks have elements that point to exactly one partner element in
the reference track. If the primary track “transliteration” contains words,
a singleton track could store the words’ corresponding part-of-speech label.
Each element in the singleton track would point to a specific element in the
primary track, inheriting the primary track element’s start and end time.

Singleton tracks can are in a way equivalent to attributes of their reference
track. In the above example where part-of-speech labels are encoded in a
singleton track, the same could be done in an attribute “part-of-speech” of
the transliteration track. The difference lies in the higher visibility of a
singleton track and in different ways to access elements when searching.

The span track type allows an element to cover a number of contiguous
elements in the reference track. This is useful to mark e.g. dialogue acts
or rhetorical relations (although, for the latter, a hierarchical encoding of
relations is not feasible).

Container

Set Track

Primary Track Secondary Track

Figure 2: Containers, Tracks and Sets.

3.2 Groups

Tracks can be grouped together by a group node (something like a directory
folder) which is equivalent to a track but cannot hold any elements and is
therefore just a structural entity. You can use this for didactic or ergonomic
reasons, e.g. to put together all linguistic tracks (part-of-speech, rhetorical
relations, dialogue acts) or all gesture-related tracks (beat, emblematic and
illustrative gestures). Track and group names are constructed like path names

11

in Java. Thus, the full name of the track “deictic” in the group “gesture” is
“gesture.deictic”.

Groups can have attributes and corresponding value sets which are in-
herited by the sub-tracks (and sub-groups). This can save some specifica-
tion/documentation work when devising many tracks that share the same
attributes.

3.3 Sets

Tracks contain temporal elements that all have a start and end time. Even
elements of secondary tracks have a beginning and an end, only it is de-
termined by the referred to elements. For some purposes it makes sense to
encode non-temporal entities. For instance, if a teacher points at different
objects that lie on a table (say, a book, a journal and a CD), you may want
to link up his pointing gestures with representations of these objects. For
these representations you do not want temporal information. Instead, you
want to handle them, e.g., in a list. On the other hand, you can represent
these things with the same kind of “elements” that are contained in track,
only without the time information. The solution is the concept of the “Set”
which mirrors that of the track, only that the time information is missing
from its set elements (Martin and Kipp, 2002).

The more abstract concept above tracks and sets I call the “container”
(see Figure 2). Tracks contain temporal elements, sets contain non-temporal
elements.

3.4 File Organization

File organization (Figure 3) is centered around the Anvil data file (extension
“anvil”) which contains the data encoded for one video (or more videos show-
ing the same session from different angles) and is based on a scheme defined
in a specification file (extension “xml”).

The paths of all video files as well as the specification file is contained in the
“head” section of the annotation file. Data like coder name, date of encoding
etc. is kept in the annotation file as well.

An Anvil project keeps a list of files as indicated in the figure. Project files
are maintained by the Project Tool (Section 7, p. 29).

Other relevant files are the HTML files created by Anvil’s coding manual
generator (see Section 5.11) and those files that can be imported into the
current annotation: Text grid files produced by PRAAT will be fused into a
transliteration track, rs2 files produced by the RSTtool are inserted in the
RST track (see Section 6).

12

Anvil project file

format: XML
extension: apj
Anvil annotation file
format: XML <anvil-project>
extension: anvil <iles>
video file(s) -
! <annotation> ittt it
format: Quicktime/AVI | .
extension: mov/avi | <head>

</head>

<ffiles>

7777777777777777777 <body>
,,,,,,,,,,,,,,,,,,, <lanvil-project>
specification file -
format: XML <lbody> 2
extension: xml <lannotation>
A A A saves/loads
v
v
Anvil Project Tool
generates imports imports
v
speech transcription RST annotation
Coding Manual
(HTML pages) format: short text grid format: XML
extension: TextGrid extension: 152

Figure 3: File organization

4 User Interface

Let me give you a quick tour of Anvil’s graphical user interface that you
can see in Figure 4. It has five components: the Main Window, the Video
Window, the Element Window® and the Annotation Board.

4.1 Main Window

The Main Window is the first window that you will see after starting Anvil. It
holds the main menu bar and, underneath, a tool bar with icons that provide
short-cuts to Anvil’s most vital functions. A text display lists user actions
and other information (e.g. the exact format of the video file).

Near the bottom the Main Window displays the specification file of the
currently loaded annotation. When the annotation is modified and not yet
saved you will find the word “modified!” in red.

Located at the very bottom are the video controls, including buttons for
frame-by-frame stepping. You also find the current time and frame of the
video above the controls.

6Known as “Track Window” in Anvil version 3.5 and older.

13

Main Window Video Window Element Window

. R i a—"" -

B e e p—
‘M GDe8 8E

g e e - AL e T
A g e
S Bl LS DR N D B

[t 5 i 1] (97 g e

A | |

s B bl [B ¢ 3 L e
[f —" o= el SO
T TR

Lk i i

Annotation Board

Figure 4: All windows of the Anvil system.

4.2 Annotation Board

The Annotation Board (Figure 5) is really the most important window since
all the coding takes place here. It gives you a time aligned view on all
tracks and their contained elements. The track hierarchy is seen on the left,
the active track being highlighted. Tracks are ordered as they appear in
the specification file (see Section 8). The larger section on the right shows
the track elements as boxes. Time, represented by the x-axis, is marked
in seconds on the top bar (small ticks represent video frames). The top left
corner provides zoom in/out buttons where zoom factor one represents a ratio
of one pixel per frame (usually 1/25 seconds). A red vertical line, the playback
line, marks the current position in the video. By dragging the line the user
can navigate through the video. Clicking on the Annotation Board causes
the playback line to be positioned on the click point and the respective track
to be selected. For better viewing, whole groups can be hidden (“collapsed”)
by deselecting the group in the view menu (Main window).

14

zoom in/out

group

collapsed group

active track ——

timeline

waveform

—— . g — pitch/intensity

=

_I-| -

-

S— selected
element
(blue frame)
|
record line (green) playback line (red)

jump to first/previous/next/last element

Figure 5: Annotation Board

The track elements are displayed with the attribute values as specified by
the user (see Section 8.5). For instance, in the transliteration track (abbre-
viated “tr]”) the attribute “word” is displayed. One attribute can also be
displayed by means of color-coding. Each value can be assigned a specific
color that is used to fill the track elements’ box (also Section 8.5).

4.3 Element Window

full track name

ot [o][e |

|om || i || |

size of element in frames

all non-empty attributes with value

users’ notes

buttons for creating, deletion and editing
of track elements

Figure 6: Element Window

15

The Element Window (Figure 6) gives you some information on the active
container (track or set) and its currently selected element. In a track, the
currently selected element is the element in the highlighted track which is
intersected by the playback line (red). Its content, i.e. all attributes and
values (upper text area) plus the comment lines (lower text area) can be
observed here. On the very top there is the full name of the currently active
track (e.g. “gesture.phrase”), followed by start and end time of the currently
selected track element. This window also allows the addition of new elements
by clicking the end button (with the playback line at the desired end time)
which will trigger the element edit window (see Section 4.4 below). Other
functions are the deletion and editing of existing elements and the linking of
subsequent elements to element groups.

12 TR = [et o pe i

e L attribute with user-defined

SEREEE e] Itokens(ValueSet)

.F.L_‘

I room for free=form notes

Inserts user-defined defaults
U] Cimwd Cvimdn [(clears all others)

Clears all attributes

Figure 7: Example edit window

4.4 Element Edit Window

The edit window pops up when the user wants to create a new or edit an
existing track element (see Figures 7 and 8). It shows all the attributes ap-
plicable for the current track. The value for an attribute is input depending
on the attribute value type (see also Section 8.2). Table 1 shows the different
value types and their GUI input look. If you have included any documenta-
tion in your specification file you can look at it online by pressing the info
buttons (see Figure 8). Anvil will show you your documentation in table
form like in Figure 9.

Comments concerning this element can be inserted into the lower text
area. Elements with non-empty comment will be marked with a little square
on the Annotation Board.

16

attribute of type MultiLink(trl) clicking on the info button will

(button for selection) open your documentation
o '-:
e ——
e - =i Mg | ¥
= i O = =¥
e e = - - e
- T
s — eamrmmr = o A \
* — i | —
3 - - |
/.l_-.!.
et T
|

rm i e e e

attribute of type MultiLink attribute of type Boolean
(checkbox)

Figure 8: Example edit window

Attribute "deictic where"

Vabue defimitions

Drefaail valne

Hubpeit pents 1o sldresie] permeiohpl

[T H

udibrenwin
ey | Subpect potsls domewhers o grdteie dpace, poxid b aotng

seif

parsan

careTele thal ir present m the room

Subpet poinls 1o meral unaly by psmg @e hend on st
chen

A present pesion. othe Than tie spesker o adirespes

nisllinro | Fouds af aodkence, =ially m o cotimacnbng s -
IHumins

Figure 9: Example attribute documentation window

5 Working in Anvil

This section gives you concise “how to” instructions for most of Anvil’s func-
tions. Read the following “preliminaries” to become familiar with some Anvil

17

value type GUI input
String string input field
Boolean check box
MultiLink selection window plus Annotation Board
ReciprocalLink selection window plus Annotation Board
ValueSet roll-down option menu
Number number slider

Table 1: Attribute value types

specific notions and then. .. have fun!

SAVETY NOTICE: When working with Anvil, please remem-
ber to back-up your valuable annotations from time to time. Sim-
ply copy all files with extension “anvil” to another directory or a
disk. Although so far, I haven’t heard of any serious data losses
with Anvil, it is always possible that, for instance, your system
crashes while Anvil is writing out data which almost certainly will
make the file unusable and so possibly destroy days or weeks of
hard work.

5.1 Preliminaries

Take a look at Figure 4 to get an impression of the overall system and the
names of the different windows: Main Window, Annotation Board, Video
Window, and Element Window.

For editing, two notions will be referred to in this document: The active
track is highlighted in light blue in the left part of the Annotation Board.
You activate a track by clicking on the track’s name. The selected element is
the box framed in light blue on the right hand side of the Annotation Board.
You select an element by clicking on it. Selecting an element makes Anvil
also activate the respective track.

5.2 Creating Annotations

Before you can create a new annotation, Anvil needs to know two things:
what video you want to code and which annotation scheme, called specifica-
tion, you like to follow. So first open a video file using File>Open in Anvil’s
menu bar. Anvil will ask you for a specification (to change the offered one,
press “browse”) and other, optional information (your name, a comment on
this annotation).

If you close the current annotation and want to start a new one on that
same video, select File>New annotation. You can create new annotations
at any time provided that there is a video file opened.

18

Writing specification files is most easily learned by looking at existing
ones. There are a number of sample specification files in the subdirectory
“spec” of the Anvil directory. To create your own specification, read at
Section 8.

5.3 Adding Track Elements

Adding track elements is your main concern when coding. It all happens on
the Annotation Board. The control buttons for adding can be found in the
Track window (top right) or in a context menu that pops up when you press
the right mouse button while being on the Annotation Board.

Primary Track In primary tracks, elements are time-anchored. In order
to insert a new track element you mark begin and end time by placing the
green record line at the beginning, the red playback line at the desired end
point. The red playback line always follows the video’s frame position in
playback (it can also be dragged with the mouse, the video will follow). The
record line does not move but can be placed at the current position of the red
line by pressing the start button in the context menu (right mouse button)
or in the Element Window. You then place the red line at the desired end
point and press end. An edit window will appear where you can specify the
contents of your new element (see Section 4.4).

Singleton Track In asingleton track, each element corresponds to one and
only one element in the respective reference track. To create a new singleton
element, place the playback line on the respective element in the reference
track but be sure that the singleton track is active. Press tag in the Element
Window or in the context menu and the edit window will appear.

Span Track In a span track, each element corresponds to a sequence of
elements in the respective reference track.

You insert a span element by specifying the first and the last element of
the reference track. You do this, again, by placing a record line upon the
first element (no matter where exactly as long as the line runs through the
element). Then, position the playback line over the last element and select
end (again, be sure that the span track is active). An edit window will
appear to ask for the attributes’ values.

MultiLink and ReciprocalLink Attributes Inserting attribute values is
trivial for Strings, Booleans and ValueSets. It is different for links (MultiLink
and ReciprocalLink). To specify the links, press the select button located
right of the attribute name (Figure 8, p. 17). Two things will happen: (1) a
select window appears that keeps track of the selected elements (Figure 10,
p. 20), and (2) the Annotation Board will be free for navigation. Clicking

19

ot Y|
EE TR T ST Ll AL
Ll L
e L —— list of selected track elements
. KT visualized with track name and labels
OH f=_ I § Tiamires Coremi

Figure 10: MultiLink select window

on elements will add them to the select window (or remove them if they are
already in). Selecting OK in the select window transfers the selection to the
currently edited element.

Note that a MultiLink/ReciprocalLink attribute takes an ordered set of
links. “Ordered” means that the order of selection is reflected in the order
of links. “Set” means that every link can only occur once. Adding the same
link twice is technically not possible (because clicking a highlighted element
de-selects it) but can happen when working with ReciprocalLink types. Even
then, adding the same link twice does not change the set (not even the order).

Adding reciprocal links” to element A makes Anvil add respective links
to the linked up elements. Imagine, for example, that you add the ele-
ments Ly,...,L, to attribute “foo” of A. Attribute “foo” is of value type
ReciprocalLink(baa). In this case, Anvil will look for an attribute “baa”
in each element Ly, ..., L, and insert A each time it finds such an attribute
(and do nothing in case there is none).

This way, you can realize symmetrical attributes like “synonym” of type
ReciprocalLink(synonym), or asymmetrical attributes like “hyponym” of
type ReciprocalLink (hypernym).

5.4 Manipulating Track Elements

Existing elements can be changed in three ways. Contents can be changed
with the edit option available in Element Window and context menu, and is
straightforward to use. To change the position of begin and end times, you
can cut or extend elements.

Cutting elements This option lets you cut off part of an element. For
primary elements, place the red line where you want to cut the element and
press cut. Anvil will ask you whether the red line is supposed to be the new

7“Computer scientists can thinks of reciprocal links as backlinks

20

start or the new end location. It will then reduce the size of the element
accordingly.

For span elements, which consist of a number of elements Ry,..., R, on
the reference track, place the red line on some element between R, and R,
(while making sure that the span track remains active) and press cut. Anvil
will ask you whether the marked place should be new start or end, resizing
the element accordingly.

Singleton elements can obviously not be cut.

Extend elements While cut allows you to reduce the size of existing
elements, extend serves to enlarge elements. Place the red line left or right
of the element you want to enlarge, exactly where you want the new start/end
border to be (this can even be within another element!). Anvil will ask you
whether you want to extend the previous element (left of red line) or the
next element (right of red line) and then adapt the size. If you placed the red
line on a bordering element, this element will be cut or even deleted if you
cut away almost all of the element (in case of deletion, Anvil will ask you to
confirm the change).

Note that in the current version, Anvil might behave unexpectedly if you
place the red line on borders of elements and press extend (which does not
make much sense anyway). It will, however, not produce any damage to your
annotation.

Singleton elements can obviously not be extended.

5.5 Playing a Segment

If you want to playback a certain segment of the video again and again, you
can place the record line (green) at the beginning of the desired segment, the
play line (red) at the end, and select play line-to-line in the context menu
(right mouse button on Annotation Board). Anvil will playback the portion
between green and red line, stopping as soon as the red line is met.

If you want to playback an annotated element in a track, simply select
the element and choose play element in the context menu.

5.6 Navigation and Short-cuts

Finding Elements You can search for specific track elements in the cur-
rently active track by selecting Edit>Search current track in the main
menu bar. Anvil will ask you for search criteria and provide a hit list. The
hit list can be used to directly jump to the found elements. Since all this
works like an analogous Project Tool function it is described in Section 7.3.

Element Hopping Within the active track you can jump to the first
or last element by clicking on the respective symbols on the Annotation

21

Board (lower, left corner, see Figure 5). Moreover, you can jump to the
next/previous element with respect to the currently selected track element.

Keyboard/Mouse Shortcuts Table 2 shows the key/mouse commands
valid on the Annotation Board.

key or mouse command | action

2 x Mouse-Left position green record line (like “start”)
G position green record line (like “start”)
1 x Mouse-Middle create track element (like “end”)

@ create track element (like “end”)
delete selected track element

edit selected track element

edit selected track element

home go to first track element

go to last track element

move active track one up

move active track one down
jump to previous track element

RIRIRIE
ENEIEIE
+ 4+ + +

LVHee

Ctr jump to next track element

Table 2: Annotation board shortcuts

Bookmarking Bookmarks can be used to mark locations of particular
interest in a video. They work very much like bookmarks in an Internet
Browser. You access them through the main menu bar. Place the playback
line at the desired location and select Bookmark>Add bookmark. A dia-
logue box will ask for name and description, and on clicking OK a small blue
triangle will show up in the time bar. With Bookmark>Edit bookmarks
you can remove/rename existing bookmarks.

Bookmarks are stored together with the encoded data in the Anvil file.

5.7 Customizing Anvil

You can tell Anvil to remember the position of your windows and change
other defaults. You find the respective console in File > Options... (see
Figure 11). To store the position and size of your windows (Main, Video,
Element Windows and Annotation Board) you click on Take over. If you
want to switch back to Anvil’s standard layout click Reset.

22

Dofmill col Michaed kDT

Dt data dirncinng O°F mm ol orll BQustamal Hriruse
UL LIFTHE SAETITE T o traar R

Figure 11: Anvil’s options adjustment window: File > Options...

5.8 Registering Plug-ins

To register a plug-in, start the Options Window with File > Options...
and click on the Plug-Ins tab (see Figure 11). You enter a new plug-in by
clicking add and inserting name and classpath of the plug-in. The plug-in
will appear in the Tools menu when you start Anvil the next time. Note
that you have to make sure that your plug-in’s class file(s) have to be located
in the “plugins” directory. Alternatively, you can adjust the classpath in the
Anvil startup script to point to your class file(s).

5.9 Printing Annotations

The printing facility does not always work (depending on operating
system or hardware?). Unfortunately, I have not been able to
spend any time to check on this, so if you cannot print you will
have to resort to screen shots.
The current version offers a first version for printing the annotation. When
having loaded an annotation, choose File>Print annotation board in the
Main Window menu bar. Anvil will ask for printer and paging info. Due to a
bug the maximal page will appear as “9999” (under Windows2000). But, of
course, Anvil will only print out as many pages as necessary for your current
annotation. I highly recommend, though, to first only print one page (specify
page “1” to “1”) to get an impression of how the print-out looks in size. The
Main Window trace text (upper left window) will tell you how much pages
Anvil would print in total.

The print-out looks like the Annotation Board without playback/record
lines and without highlighting. It comes in landscape orientation and mul-

23

tiple pages can be glued together to get a seamless panoramic view of the
whole work.

5.10 Exporting Text

Once you have imported speech transcription as outlined in Section 6, you
may want to export the transcription as a simple ASCII text file. You can
do this by selecting File>Export: track to txt in the main menu. Anvil
will ask you which track to export. The selected track (for example, the
one containing your speech transcription) will be written to the chosen file.
In that file, you will find all elements in correct order, separated by blanks.
Each element is represented the same way as in the respective boxes on the
Annotation Board (see Section 4.2).

Exporting the text of the speech transcription is, e.g., important for RST
encoding (see Section 6). way as it is displayed on the Annotation Board (see
Section 4.2).

The exported text is not meant for statistical analysis. How to ex-
port data for statistical analysis is described in Section 7.2, p. 30.

5.11 Generating a Coding Manual

For systematic annotation is it essential that the coding scheme’s units are
defined as clearly and consistently as possible. Putting such definitions in
words and writing an accompanying document, the coding manual, can be
painstaking work. Anvil does not spare you all the work but alleviates the
task by exploiting the fact that the structure of the coding manual is usu-
ally the same as the one already defined in the specification file. By in-
serting definitions and descriptions into the XML specification file (bracketed
by <doc>...</doc> tags, see Section 8.7) you can have an HTML manual
generated which has the look-and-feel of javadoc (see Figure 12). The ad-
vantage of HTML being that you can browse the electronic manual on screen
while in the process of annotation. Selecting Edit>Specification>Create
manual will make Anvil produce an HTML manual of the current default
specification. If the current default specification is called “foo.xml”, located
in directory “specdir”, then you can find the HTML manual in subdirectory
“specdir /foo”.

24

L] # 0 o *
I
Annotation Mamual

o ol b we g P By g rml

T ol sl e, g ol o s e S e s v e ol v i Mo TH el B L e
et wian P Bewy e demy= | mebs o poeedy pabieted kool The v b s s d e s s of Mg
previs whre dor o sy b drs wr e e

Pdades

jalle

[T w10 B e o i v o B vt | o bnack 1o e iy i rpaader o
| byl o e et b o s B s Brled miie o of mebevrad | o ond i weesd s Banr Lidet whios
LR FTER S
| Flan ks 1 mmchama ' Lem 1 A P i

e Thed wi m i of =2 m kil Fapi=d bp 5 e i o wrler s [l st @ | ok | e il . i
o meormashod g e Honn Fan 6 em e o o ik elareing

1

Tami

[T} ol g A2 Nl S e aiaRalon Thi Bk P oy e 1o e W B L

frep
. o [L ekt e |
Fiat e medds e e bk ik [T
MR o s . S ok i g Dl s L b i i o8 ink el S, i
brmp -
e I
| |%:_E oI - SSNSIRUCT O TR [Py SRR T S —|
|

Ay e arra e) g e e ey Ty r:'t-lrr'\q:-hnﬂr rubar tmrh o b Brmad o e
adapme ek bt o pma bmik mm i The wokens sni mieiala vl Ty R oF wo e el Barwema 2y
Tamin s pres=d b Pyt wba wfspprend s ipecr o 'man ol bas aba” wias v plgson o ol S g v 1

B I T

i by el e Taa Ml 10 1400 TR R0

Figure 12: Start page of automatically generated coding manual.

6 Importing Data

Anvil can import annotations (for example speech transcription), pitch and
intensity data from PRAAT, and speech transcriptions from XWaves.

6.1 PRAAT Transcription

Anvil supports importing data from PRAAT®. More precisely: Anvil can
import arbitrary interval tiers from a PRAAT short text file. This section
will explain step by step how to do this for the case of speech transcription.
Similar procedures apply for any other kind of data that you code in PRAAT
(syllables, intonation labels etc.).

I start out by describing very briefly how to annotate speech signals in
PRAAT. First of all, extract the sound track from your video file, saving it

8PRAAT, developed by Paul Boersma and David Weenik, runs on many plat-
forms (Windows, Unix, Mac) and is freely available. Contact Paul Boersma
paul.boersma@hum.uva.nl and visit http://www.fon.hum.uva.nl/praat for more infor-
mation.

25

in, for instance, Microsoft’s “wav” format (or any other format PRAAT can
read).

In PRAAT, you have a main window which displays a list of PRAAT
objects. Any sound file that you load, any annotation that you create, will
become a PRAAT object. Now proceed as follows:

1. Select Read>file in the menu bar and choose the sound file. It will
appear as a sound object in the list.

2. Click on label & segment, selecting To Text grid. In the dialogue
box, erase the default values and insert “words” in the Tier names
input field. Leave the Point tiers field empty.

3. The last step produced a second entry in the object list, a Textgrid
object. Holding down the CTRL-key, select both objects in the list.

4. Click on Edit. The annotation window with waveform (amplitude over
time) plus your “words” annotation tier are displayed.

5. Transcribe words. Consult the excellent document by van Lieshout
(2000)? if you need help here.

6. Select the Textgrid object only in the list of the main window by clicking
on it (important!'?)

7. Select Write>write short text file in the menu bar and choose a
location in the ensuing file name dialogue.

In Anvil, you can import the PRAAT data to any primary track that has at
least one attribute of String type. Select File>Open in Anvil and pick the
PRAAT short text file (e.g. “foo.TextGrid”). You will be asked to choose a
tier from the PRAAT file (in our example, there will be only the “words”
tier) and the target track in Anvil. Then, you will be asked which attribute
you want the words to go in. Having decided this, you will see your annotated
words appear on the right track. Note that everything else in that track will
be erased (though Anvil will ask your permission before).

6.2 PRAAT Intensity and Pitch

You can import intensity and pitch data that you computed in PRAAT into
Anvil and let it be displayed as a track (Figure 5 on page 15). In PRAAT do
the following:

1. Load sound file with Read>Read from file. ..

9 Available under http://www.fon.hum.uva.nl/praat
107t is crucial that before the step there is only the Text grid object selected! Otherwise,
nasty things will happen and your hours worth of annotation will irrevocably be lost.

26

2. Depending on the PRAAT version, do the following

(a) PRAAT version 4.0 or newer:

e Pitch: Click on “Periodicity” and select “To Pitch”. Press
“OK” in the upcoming dialogue window. The ensuing com-
putation will take a while. When it is done, select the new
Pitch object and click on “Down to PitchTier”.

e Intensity: Click on “To intensity” and press “OK” in the up-
coming dialogue window. The ensuing computation will take
a while. When it is done, select the new Intensity object and
click on “To IntensityTier(peaks)”.

(b) PRAAT version older than 4.0: Analyze the sound object by click-
ing on “To Analysis...” (in newer PRAAT versions). Press “OK”
in the upcoming dialogue window. The ensuing computation will
take a while. Select the new Analysis object and click on “Extract
pith tier”

3. Select the new PitchTier /Intensity Tier object and save it with Write>Write
to short text file...

In Anvil do the following:

1. Your specification must reserve a “speech analysis” track which is de-
fined like this (in the example I call the track “praat” but that is up to

you):

<track-spec name="praat" type="speech analysis" />
2. Load your annotation with File>Open

3. Load the IntensityTier or PitchTier file with File>Open and click
“OK” in the upcoming dialogue window. Anvil will display the respec-
tive contour in the reserved track.

The pitch contour will be displayed as shown in Figure 5 (page 15). Note
that due to implementational reasons the recomputation while zooming in
and out may take a while.

6.3 XWaves Speech Transcription

Import of transcription files from XWaves (Entropic) works similar to the
PRAAT case (see above). Simply select the file, say “foo.words”, with
File>Open and select the Anvil target track and then, target attribute.
Note that in XWaves one actually annotates time points which are trans-
lated by Anvil to intervals.

27

6.4 RSTtool Annotation

Anvil can also import Rhetorical Structure, a hierarchical markup of text
organization (cf. Mann and Thompson (1988) for Rhetorical Structure The-
ory) that can be coded with the RSTtool!!. Imported data is transferred to
a secondary track in a flattened form (only rhetorical segments plus relation
name and relation direction, i.e. forward/backward). There is a slight mod-
ification to RSTtool needed, though, since it does not produce 100% legal
XML files. Contact me (kipp@dfki.de) for the modifications.

IIRSTtool was developed by Mick O’Donnel and can be downloaded on
http://www.sil.org/linguistics/rst/micktool.htm (version 2.5). It is written in
Tcl/Tk 8.3 and runs virtually on any platform.

28

7 Working with Projects

— Project name
B Pl s o] S el by o b s vl

. P .
L List of annotation files in project
(highlighted annotation is selected)
[ST TS

Ly EAE N — 1 Info for marked annotation

et gy o dam 0 OT B RS 08
e
S

b Aoy ™
1 i, e O

froee EETEE T

- L —y

Y ————

-
TR =
[—1
e B re—
[T e

proran gy 3 ey
[R Lo
W |
e g) e—_ k

= | Loads marked annotation to Anvil

\ \ = Buttons for adding/removing files
to/from this project

Figure 13: Anvil Project Tool.

Very often you want to look at more than one annotation. Say you have
recorded and annotated a number of classroom sessions (teacher, students,
blackboard) and are interested in looking at all the deictic gestures (pointing
gestures) that occurred in these sessions. Or maybe you only want to look
at those sessions with a particular teacher or those recorded in a particular
semester. Whatever annotations you are interested in you can assemble to a
list (of Anvil files) that we call a project.

The Project Tool (Figure 13) allows you to assemble such file lists or
projects and store them for further usage. You start the Project Tool in
Anvil, in the main menu under Tools>Project Tool.

Within a project you can search a specific track and locate the found
elements in the annotation. Or you can export a track to a text table intended
for statistical analysis.

29

Note It is necessary that all files in a project have the same specification
file! This is logical when you want to search the same track in multiple files:
equal specifications guarantee that this track exists in all the files. Anvil will
complain if you try to add files with differing specifications.

7.1 Creating, Opening And Browsing a Project

To create a new project, simply keep adding files by pressing the add button
at the bottom of the window, or add a whole directory of Anvil files with add
dir. Remove undesired files with remove or all files with clear. Once you
have all desired files in your project, save it with File>Save in the Project
Tool’s menu bar.

Next time you want to work with this project, use the File>Open option
of the Project Tool’s menu bar to load it.

Note that you can comfortably browse the files contained in the currently
opened project. When you click on a file name, information about its tracks
is displayed in the bottom text section. Also, you can load the currently
highlighted file to Anvil by clicking the to Anvil button.

7.2 Exporting Tracks

If you need to analyze the elements of a specific track, say “gestures”, across
a number of annotations, you have to put the track data all the annotations
to a single text file. This text file can then be analyzed by statistical software
like SPSS or Statistica.

In the Project Tool’s menu bar, select Export>track table and pick
the desired track, the desired output format (SPSS or Statistica) and file
name from the ensuing dialogues. Anvil will produce a text file containing
a large table. In this table, all track elements are listed in rows. Each
row contains (1) an identifier, (2) the element’s start/end time, and (2) all
attribute values. The first row contains the names of the columns, i.e. the
names of the attributes. In SPSS and Statistica, the table can be imported,
so that elaborate quantitative analysis can ensue.

For the SPSS output format you get numbers as attribute values. Anvil
automatically converts ValueSet tokens into numbers. To know what num-
bers correspond to what tokens, Anvil produces an index file where, for all
ValueSet attributes, a number to token mapping is printed. The file name of
this second file is generated from the chosen file name: if you exported your
table to, say, foo.txt, the index file will be called foo_labels.txt.

7.3 Finding Track Elements

With the Project Tool you can search for track elements across annotations.
The resulting hit list can be used to navigate through annotations: simply
click on a found element and Anvil will load the respective annotation and

30

Figure 14: Anvil with integrated hitlist window.

position itself right on the element. This makes comparison of annotated
elements fast and easy (see Figure 14).

In the Project Tool’s menu bar, select Search>Find track elements
and choose a track in the ensuing dialogue. The following Search window
(Figure 15) allows you to look for elements sharing certain property predicates
specified in the goods list G = {g1, ..., g} and nogoods list N = {nq,...,np}.
A property predicate g; has the structure A = V where A is an attribute and
V is a value. For predicates n; this is a negation A # V. Anvil will display
all elements with

(1 V...Vge) A(n1 V...Vnp)

= e
el sl T (e LR o — rmrwem ¢ mtmrm e
EmoE e # T
- o m— Eem
T — oy
= [j————
- e

Figure 15: Search window.

You can change the way the elements are displayed with the display option
checkboxes shown to the right of the Search window. The found elements (hit
list) will be output as a table. Double clicking elements in this table makes

31

Anvil load the respective annotation and position itself on the right element.
The same is done when clicking on the to Anvil button. The button Shrink
to fit can be clicked to integrate the hit list window into the normal Anvil
layout to make browsing more comfortable (see Figure 14).

32

8 Writing a Specification File

With the specification file you tell Anvil how your annotation scheme looks
like, i.e. what tracks you need, how they are called, and what attributes and
values their elements may have.

The language for doing this is XML (eXtensible Mark-up Language) which
looks very much like HTML and should be easy to get used to, even if you
do not know either XML or HTML. A sample file of a complete specification
is printed in Appendix C (p. 49). If you have installed Anvil, you can find
more examples of specification files in the subdirectory “spec” of the Anvil
directory.

8.1 File Structure

Specification files have the standard extension “xml” like in “foo-spec.xml”.
When you open a file you will see that it has two main parts: the head,
specifying the user’s own value types, and the body, containing the track and
group specifications. So each specification looks in principle like this:

<?xml version="1.0" encoding="IS0-8859-1"7>
<annotation-spec>
<head>

</head>

<body>

</body>

</annotation-spec>

The head part is optional and can be omitted. What this sample nicely
demonstrates is the principle structure of XML files in general where pieces
of code are bracketed by so-called tags. So the XML tag annotation-spec
brackets the head part as well as the body part. The head and body tags
bracket the sub parts of the specification. Bracketing works with an opening
and a closing bracket, the latter being marked with a “/” (called “forward
slash”).

Let’s start with the body because the function of the head will become
clear only at a later stage.

8.2 Tracks and Groups

Specify a track with XML tag track-spec, including the name and the type
(primary, singleton or span) as attributes. Note that the track name must
not contain a dot “.” because the dot is reserved as a special symbol.

If your track is of singleton or span type, specify its reference track in the
ref attribute. Use the full name for nested tracks, e.g. “gesture.deictic” for
track “deictic” in group “gesture” (see Section 3.2). Note that secondary
tracks must be defined after their associated reference track. This

33

is a convenient way of avoiding cycles (e.g. two secondary tracks depending
on each other). The specification of the track’s elements will be bracketed by
the track-spec opening and closing tags:

<track-spec name="trl" type="primary">

</track-spec>
<track-spec name="rst" type="span" ref="trl">

</track-spec>

One or more tracks can be organized in a group by bracketing the track
specifications in a group tag:

<group name="ling">
<track-spec name="i-phrase" type="span" ref="trl">

</track-spec>
<track-spec name="rst" type="span" ref="trl">

</track-spec>
</group>

The order in which you define the tracks and groups here will be the same
as on the Annotation Board later on.

Edit option When adding elements in Anvil’s graphical user interface
(GUI), Anvil will automatically insert the values of the last added element
as default values for the new one. If you want to switch this off, use the
edit-takeover feature like this:

<track-spec name="trl" type="primary" edit-takeover="false">
</t;;ék—spec>
Track height Track are displayed in the GUI as bars with a certain height.
You can customize this height by specifying a scaling factor, e.g. if you want
a track to be twice as high as a normal track that factor would be “2” (or

“1.5” for one and a half times as big). Specify this factor in the height
feature. Anvil accepts height values between 0.7 and 2:

<track-spec name="trl" type="primary" height="1.2">

</track-spec>
Waveform track To display the waveform of a video’s audio data, you
create a track of the special type “waveform”. You have to give this track a

name, you can position it anywhere you like, you can scale its height, just as
with any other track:

<track-spec name="audio" type="waveform" height="1.5" />

34

Note that Anvil will need more time to load a video when this feature is
switched on. So if you are bothered by slow loading times, remove the wave-
form track.

Collapse by default If you want to have certain groups collapsed (Sec-
tion 4.2) by default you can tell Anvil so:

<group name="ling" collapse="true">

</é;;up>
This makes Anvil collapse group ling each time a new Anvil data file is
loaded.
8.3 Sets

A set is a container for non-temporal objects (see Section 3.3). You define a
set called, for example, “objects” like this:

<set-spec name="objects">

</s;£;spec>
A set contains attributes just like a track. But unlike tracks, a set cannot be
grouped with the XMLgroup tag.

8.4 Attributes

Within the track-spec opening and closing tag you can define attributes
and corresponding value types. There are five value types: String, Boolean,
Number, MultiLink and ReciprocalLink. When using these types, the at-
tribute tag is usually an empty tag. For String and Boolean types simply
write:

<attribute name="token" valuetype="String" />

<attribute name="repetition" valuetype="Boolean" />

For Number types you specify an interval. Here we define the interval between
0 and 4 (including borders):

<attribute name="token" valuetype="Number(0,4)" />

A Reciprocallink is a link where a reciprocal relationship between links is
defined. For instance, “hyponym” is reciprocal to “hypernym”, which is an
example for an asymmetrical relation:

<attribute name="hyponym" valuetype="ReciprocalLink(hypernym)" />

The attribute “synonym” is an example for a symmetrical relation with itself:

35

<attribute name="synonym" valuetype="ReciprocalLink(synonym)" />

Apart from these in-built value types, there is the option of defining a set of
possible value tokens, called a ValueSet. You specify these values with the
value-el tags (you will see an alternative way right below):

<attribute name="emphasis">
<value-el>strong</value-el>
<value-el>moderate</value-el>
<value-el>reduced</value-el>
</attribute>

Defining your own ValueSet type Imagine you want to re-use a valueset
like the one above for the attribute “emphasis” because you have a second
track containing the same attribute. Then you can define your own value
type in the head section of the specification file. Put all your definitions

within the valuetype-def tags like this:

<head>
<valuetype-def>
<valueset name="emphasisType">
<value-el>strong</value-el>
<value-el>moderate</value-el>
<value-el>reduced</value-el>
</valueset>

<valueset name="...">
</valueset>
</valuetype-def>
</head>
Now the definition of the emphasis attribute becomes much more compact:
<attribute name="emphasis" valuetype="emphasisType" />
Setting default values When adding a new track element using Anvil’s

graphical user interface (Section 4), the following default values will auto-
matically appear in the attributes:

value type | default
String empty

Boolean “false”
MultiLink empty
ReciprocalLink empty
ValueSet “none”

If you want another default value for your attribute, specify this in the
attribute tag like in the following examples:

36

<attribute name="foo" valuetype="String" defaultvalue="hey joe!" />
<attribute name="weather" defaultvalue="sunny">
<value-el>rainy</value-el>
<value-el>sunny</value-el>
</attribute>
<attribute name="repetition" valuetype="Boolean" defaultvalue="true" />

Suppressing “none” (empty value) In a ValueSet attribute the coder
usually has the option to select “none” instead of one of the user-defined
tokens. This “none” is the so-called empty value. You can tell Anvil not
to accept empty values by setting emptyvalue to “false”. This makes most
sense in conjunction with a default value:

<attribute name="weather" emptyvalue="false" defaultvalue="sunny">

<value-el>rainy</value-el>
<value-el>sunny</value-el>
</attribute>

Using graphical symbols An attribute ValueSet can also contain graph-
ical symbols (icons) that you must provide as graphics files (e.g. in JPG or
GIF format). To use this feature, first create a subdirectory in the Anvil
directory and call it “usericons”. Copy all the graphics files you want to
use there. Then, define for each value which graphics you want to attach to
it. Note that you also must provide a normal value name! Using
only graphics is not possible at the moment. See the following example as a
guideline:

<attribute name="weather">
<value-el image="rainpic.jpg">rainy</value-el>
<value-el image="smiley.gif">sunny</value-el>
<value-el>cloudy</value-el>

</attribute>

As you can see above, you do not have to attach an image to every value.

Attribute inheritance As mentioned before, the attribute definitions be-
long to a track-spec block. They can also be used in a group block. Al-
though a group itself does not contain elements, the specified attributes are
inherited by all tracks subordinated to the group:

<group name='"gesture">
<attribute name="phase">
<value-el>preparation</value-el>
<value-el>stroke</value-el>
<value-el>retraction</value-el>
</attribute>
<track-spec name="deictic" type="primary">

</track-spec>
<track-spec name="beat" type="primary">

37

</track-spec>
</group>

In the example we defined two tracks in the “gesture” group. Remember
that the tracks’ names will be “gesture.deictic” and “gesture.beat”. Because
of attribute inheritance both tracks will have an attribute “phase” with the
specified ValueSet.

8.5 Display Options

Display attributes On the annotation board, elements are displayed as
boxes. The contents of the elements consists of attributes and values, which
ideally you would like to see all in this box. However, due to the limited
amount of space in such a box, you can select which (most important) at-
tributes you want to be displayed directly on the board. We call these
attributes display attributes. The current values of all display attributes
will show up in the box, separated by commas. Empty attributes will not
be displayed at all. To make an attribute a display attribute just add
display="true" to the attribute tag:

<track-spec name="phrase" type="span" ref="gesture.phase">
<attribute name="category" valuetype="gestureType" display="true"/>
<attribute name="emblem type" valuetype="emblemType" />
</track-spec>
Link Color-coding When using links (value types “MultiLink” or “Re-

ciprocalLink”) you can let Anvil display the linked-up elements in a specific
color (for a list of colors look at Appendix B). You specify the color like this:

<attribute name="my link" valuetype="MultiLink" link-color="orange" />

Element Color-coding Color-coding can be used to display the value of
a single attribute in terms of colors. For this, you have to two things: First,
specify the attribute you want to color-code using the color-attr feature in
the track-spec tag:

<track-spec name="trl" type="primary" color-attr="emphasis">
</track-spec>

Second, specify the colors for the different values. Anvil offers a number of
standard colors like “green”, “yellow”, “gray” etc. You can find a complete
list of colors in Appendix B:

<track-spec name="trl" type="primary" color-attr="emphasis">

<attribute name="emphasis" valuetype="emphasisType">

38

<value-el color="red">strong</value-el>
<value-el color="light red">moderate</value-el>
<value-el color="orange">reduced</value-el>
</attribute>
</track-spec>

Arbitrary colors can be defined with an RGB value in hex format:

<value-el color="#eeff00">strong</value-el>
<value-el color="#ffaa00">moderate</value-el>
<value-el color="#aaff00">reduced</value-el>

Font and font color selection You can change the fonts (including color)
used on the annotation board. By inserting a font specification within the
confines of the body tag you define a font for the whole annotation board (all
tracks).

<body>

</body>
By inserting a font specification within a track-spec tag you define a font for
only the respective track, overriding other font specifications.

<body>

<track-spec>

</track-spec>
</body>

Note that you need not specify all features (e.g. you can omit color or size
— Anvil will fall back on default values for such cases). For possible color
values look at Appendix B. For “style” you can specify: plain, italic, bold or
bolditalic. For “face” you can try:

e Dialog

DialogInput

Monospaced
Serif

SansSerif

8.6 GUI Customization

Element Window The temporal borders of track elements are showed in
the top section of the Element Window. You may need a more precise display
than given in the standard case (i.e. hh:mm:ss). Anvil can be made to display
seconds (up to four decimals) by putting the following into the head section
of your specification:

39

<gui-settings>
<track-window precise-time="true" />
</gui-settings>

8.7 Documentation

If you add documentation to your specifications, this information can be
accessed in two ways. First, while coding you can always look into your
definitions by clicking “info” buttons (see Figure 9, page 17). Second, you
can let Anvil generate a complete coding book in HTML that can be browsed
with an Internet brower like Netscape or Internet Explorer (Section 5.11).

Documentation can be added for groups, tracks, sets, attributes and even
attribute values. These explanations must be bracketed in doc tags and can
contain HTML formatting tags:

<track-spec name="posture shift" type="primary">
<doc>
This track registers any movement in (sitting) posture like
shifting on the chair, crossing/uncrossing legs etc.
</doc>
<attribute name="movement" >
<doc>
Code the type of movement here. Start at the first frame where
movement can be seen. End where all body parts are in rest
position.
</doc>
<value-el>
cross-legs
<doc>
Subject crosses legs.
</doc>
</value-el>
<value-el>

</value-el>
</attribute>
<attribute name="certainty" valuetype="Number(0,4)">
<doc>
How certain are you of your coding?

</doc>
</attribute>

40

9 Other Annotation Projects

There has been a lot of research done in linguistic and, more recently, in multi-
modal data annotation. In this section I will briefly review some projects that
are related to Anvil. One has to distinguish between annotation schemes, an-
notation frameworks'? and tools. Tools can be further differentiated by the
tasks they can handle: annotation/coding, data retrieval, analysis etc. Not
all of the reviewed projects cover all aspects.

The Partitur format (Schiel et al., 1998), developed by the Bavarian Archive
for Speech Data (BAS), was used in the VERBMOBIL project (Wahlster, 2000)
and is an annotation framework that supports multiple tracks. There is one
reference track which all other tracks refer to, the so-called canonical track
which contains words in a phonological transcription. The elements of other
tracks (lexical entries, dialogue acts, part-of-speech etc.) can point to an
arbitrary collection of elements of the canonical track. The description of
an element is a simple string. Partitur is actually just a file format, meant
for centralized data collection/distribution. There are no generic tools for
coding.

The completed European project MATE!'? (Multilevel Annotation Tools
Engineering, 1998-2000) aimed at producing a generic workbench for linguis-
tic coding and data retrieval. Annotation schemes from different fields and
projects were taken as models, different file formats (e.g. BAS Partitur) are
supported in an XML-based approach. Although powerful retrieval concepts
were developed, the tool as a whole is not available in a stable version where
coding can be practically pursued.

The ongoing US project ATLAS (Architecture and Tools for Linguistic
Analysis Systems, cf. Bird et al., 2000b) introduced the concept of annotation
graphs. A large number of schemes are compatible with annotation graphs.
Anvil’s object model bears some similarity to annotation graphs. In ATLAS,
much work has been done by Bird et al. (2000a) for finding retrieval mecha-
nisms which do not exist yet in Anvil. The data exchange format is also kept
in XML.

CAVA'* (Computer Assisted Video Analysis) is a system of tools, devel-
oped at the MPI for Psycholinguistic at Nijmegen. It offers tools for annota-
tion, retrieval and analysis. CAVA’s components require different platforms
(Mac, PC) and use special hardware which makes it difficult to install. A
component comparable to Anvil is the Mac-based MediaTagger used for an-
notation of Quicktime files. It is currently being replicated in an extended,

121 take an annotation framework to be a representation mechanism for the entities
of an annotation scheme (cf. Bird and Liberman, 2001). The framework thus constrains
the way the scheme can be structured. When in doubt about the annotation framework
of a project, look at the file syntax which most often reflects quite clearly the internal
representation.

3http://mate.nis.sdu.dk

nttp: //www.mpi.nl/world/tg/CAVA/CAVA . html

41

Java-based version called EUDICO (European Distributed Corpora), a Eu-
ropean project (Brugman et al., 2000) still in progress. EUDICO’s coding
tool ELAN is already available.

The TASX!5 (Time Aligned Signal data eXchange) project is an annota-
tion project at the University of Bielefeld, Germany. Its goal is to create an
environment for the storage, exchange and annotation of linguistic data. A
Java-based coding tool, the TASX-Annotator, is already available. It offers
a number of different views on the data: the time-aligned view (similar to
Anvil’s annotation board), the score view (HTML, non-editable) and the text
view (one element per line). All data is stored in XML. XSL is used for data
conversion. Conversion tools already exist, also for Anvil data.

The MMAX!6 tool was developed at the European Media Lab (EML),
Heidelberg, for the annotation of multi-modal corpora (Miiller and Strube,
2001). It offers an annotation framework that was inspired by MATE: ele-
ments of different types can contain attributes and point to each other. Types
are comparable to Anvil’s tracks, though the type concept allows overlap and
nesting within one track. Elements are called markables. The tool is written
in Java with JMF, is XML-based and meant to be scheme-independent. The
graphical user interface only supports the mark-up of texts, there is no video
component integrated.

Akira is a video analysis tool developed at the University of Mannheim
for film studies and allows multi-track annotation with an intuitive user inter-
face. Akira stores annotation data as binaries which makes further processing
difficult. Other systems from related areas, e.g. VideoAS developed at the
University of Saarland for media psychological investigations, have a similar
problem in that they are too focused on a specific task and do not produce
files in a workable format.

MacSHAPA!'" is a Macintosh software for “observational data analysis”
developed by Penelope Sanderson at the University of Illinois (Sanderson et
al., 1994) that allows transcription with your own annotation scheme. To my
knowledge, it is not developed or maintained any more but one can still get
a software copy and the 800-page manual that comes with it. MacSHAPA
offers the following statistical analyses: content analysis, duration analysis,
transition analysis, lag sequential analysis, reliability (kappa) and cycle re-
ports.

The Observer (version 4.0) by the Noldus company'® is a commercial
system. It allows multi-layered annotation by the concept of classes (which
losely correspond to Anvil’s tracks) and behavioral elements (Anvil’s track
elements). Annotation is done on a checksheet where coded elements appear
in temporal order like in a list. It does not offer a time-aligned view while
working on the annotation which is probably its greatest drawback. On the

Bhttp://coli.1lili.uni-bielefeld.de/ milde/tasx/
6http://www.eml.org/english/research/NLP
Thttp://www.it.swin.edu.au/projects/macshapa
18http://www.noldus.com

42

analysis side, The Observer offers simple descriptive stats (frequencies), reli-
ability studies and lag sequential analysis (transitions and transition times).
Only here can the time-aligned view be computed. The Observer is a robust,
professional tool but has some restrictions in the definition of behavioral ele-
ments (only two attributes per element), it is not platform-independent (MS
Windows only) and not XML-based.

43

10 Acknowledgements

I would like to thank a number of people for precious input on bugs, missing
functionality and technical solutions (listed in alphabetical order, hope I did
not forget anyone): Stephan Baldes (DFKI), Piero Cosi (CNR), Ralf En-
gel (DFKTI), Jennifer Cornish (U Buffalo), Elena Frigerio (U Milan), Patrick
Gebhard (DFKI), Emanuela Grandinetti (U Milan), Lisa Harper (MITRE),
Jeffery Higginbotham (U Buffalo), Martin Klesen (DFKI), Christoph Lauer
(DFKI), Dan Loehr (MITRE), Jean-Claude Martin (LIMSI), Brian MacWhin-
ney (CMU), Jan-Torsten Milde (U Bielefeld), Kari Anne Myers (LDC), Chris
Osborn (LDC/UPENN), Norbert Reithinger (DFKI), Graziano Tisato (ISTC),
Hannes Vilhjalmsson (MIT), various other people from the LDC at UPENN,
and all partners of the European NITE project.

References

Alexandersson, J., Engel, R., Kipp, M., Koch, S., Kiissner, U., Reithinger, N.,
and Stede, M. (2000). Modeling Negotiation Dialogs. In Wahlster, W., ed.,
Verbmobil: Foundations of Speech-to-Speech Translation. Berlin: Springer. 441—
451.

Bird, S., and Liberman, M. (2001). A Formal Framework for Linguistic Annotation.
Speech Communication 33(1-2):23-60.
Bird, S., Buneman, P., and Tan, W.-C. (2000a). Towards a query language for

annotation graphs. In Proceedings of the Second International Conference on
Language Resources and Evaluation, 807-814.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun, C., and Liberman, M.
(2000b). ATLAS: A Flexible and Extensible Architecture for Linguistic An-
notation. In Proceedings of the Second International Conference on Language
Resources and Evaluation, 1699-1706.

Brugman, H., Russel, A., Broeder, D., and Wittenburg, P. (2000). EUDICO.
Annotation and Exploitation of Multi Media Corpora. In Proceedings of LREC
2000 Workshop.

Kipp, M. (2001a). Analyzing Individual Nonverbal Behavior for Synthetic Char-
acter Animation. In Cavé, C., Guaitella, 1., and Santi, S., eds., Oralité et
Gestualité. Actes du collogue ORAGE 2001, 240-244. Paris: L’Harmattan.

Kipp, M. (2001b). Anvil — a Generic Annotation Tool for Multimodal Dialogue.
In Proceedings of Eurospeech 2001, 1367-1370.

Kipp, M. (2001c). From Human Gesture to Synthetic Action. In Proceedings of the
Workshop on ”Multimodal Communication and Contert in Embodied Agents”
(Agents-2001), 9-14.

Mann, W. C., and Thompson, S. A. (1988). Rhetorical Structure Theory: Toward
a functional theory of text organization. Text 8(3):243-281.

Martin, J.-C., and Kipp, M. (2002). Annotatng and Measuring Multimodal Be-
haviour - Tycoon Metrics in the Anvil Tool. In Proceedings of the Third Inter-
national Conference on Language Resources and Evaluation (LREC).

44

Miiller, C., and Strube, M. (2001). MMAX: A tool for the annotation of multi-
modal corpora. In Proceedings of the 2nd IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, 45-50.

Sanderson, P. M., Scott, J. J. P., Johnston, T., Mainzer, J., Watanabe, L. M., and
James, J. M. (1994). MacSHAPA and the enterprise of Exploratory Sequential
Data Analysis (ESDA). International Journal of Human-Computer Studies
41:633—-668.

Schiel, F., Burger, S., Geumann, A., and Weilhammer, K. (1998). The Parti-
tur Format at BAS. In Proceedings of the First International Conference on
Language Resources and Evaluation.

van Lieshout, P. (2000). Praat workshop. a basic introduction. Technical report,
University of Toronto.

Wahlster, W., ed. (2000). Verbmobil: Foundations of Speech-to-Speech Translation.
Berlin: Springer.

45

A Features of Anvil 4.0

New features with regard to the former version are printed boldface.
e General

— plug-in facilities
— platform-independence (only Java 2 and JMF required)
— frame-accurate video control (and slow motion)
— display of waveform
— multi-layered annotation in hierarchical tracks
— track elements are objects with attribute-value pairs
— attributes can hold arbitrary links to other elements
— links are color-coded
— links can be reciprocal
— all tracks/attributes are completely user-defined
— special container type “set” for non-temporal objects
— hotlist (direct access to most recently opened files)
— customizable window layout
— auto-layout
e Viewing and Editing
— playback of marked segment
— elements can be cut and extended after insertion
— free-form comment in elements (marked with flag)
— bookmarks (like in Internet browsers)
— automatic generation of coding manual HTML pages
— collapsible group nodes (view)
— scalable track height
— color-coding of track elements
— context popup menus
— element forward/backward hopping
— jumping to time/frame
— online attribute documentation in edit window
— group collapsing/expanding on double click
— mouse wheel for scrolling (due to Java 1.4)

— comment display can be switched off (view option)

46

— configurable fonts for the annotation board

— graphical symbols for annotation
e File Exchange
— XML format for all file exchange

— import interface for RSTtool

— import interfaces for PRAAT and XWaves

— import of pitch data from PRAAT (linked up as file)

— import of intensity data from PRAAT

— export to text files

— export to text tables (for stats packages like SPSS or Statistica)

e Search and Find

— global search across annotations (Project Tool)

— click and jump connection from hitlist to Anvil
e Analysis and Presentation

— print-out of annotations (not reliable!)

47

B Anvil Color Tables

Elements can be color-coded according to their values in a ValueSet as
outlined in Section 8.5 and shown in a small example:

<track-spec name="trl" type="

primary" color-attr="emphasis">
<attribute name="emphasis" valuetype="emphasisType">
<value-el color="red">strong</value-el>
<value-el color="light red">moderate</value-el>
<value-el color="orange">reduced</value-el>
</attribute>
</track-spec>

Possible value colors are:

black
light blue blue dark blue
light cyan cyan dark cyan
light gray gray dark gray
light green green dark green
light magenta magenta dark magenta
light orange orange dark orange
light pink pink dark pink
light red red dark red

white dark white
light yellow yellow dark yellow

Links can be color-coded as outlined in Section 8.5 and shown here:

<attribute name="my link" valuetype="Multilink" link-color="orange" />

Possible link colors are:

green
red
magenta
orange
silver

blue
yellow

48

C Specification File Sample

This is an excerpt of a specification file (extension “xml”), containing the
specification of the “trl” (transliteration) track and the “deictic” track. Note
that attribute value sets can be defined in the head as so-called ValueSets
and assigned a name (see “phaseType” in the excerpt). Thus, the same set
of values can be reused in different tracks.

<?xml version="1.0" encoding="IS0-8859-1"7>
<annotation-spec>
<head>
<valuetype-def>
<valueset name="phaseType">
<value-el color="#eeee00">
prep
</value-el>
<value-el color="#dd0000">
stroke
</value-el>

</valueset>
</valuetype-def>
</head>

<body>
<track-spec name="trl" type="primary" color-attr="emphasis">
<doc>
This track contains the transliteration of the spoken
discourse. The token attribute contains the word or sound
uttered. There are a number of special marks signified by
squared brackets like [breath] or [aeh] for the mark-up of
nonverbal sounds. Note that there is no syllable
information.
</doc>
<attribute name="token" display="true">
<doc>
Words and nonverbal sounds.
</doc>
</attribute>
<attribute name="emphasis" valuetype="emphasisType">
<doc>
Emphasis of this word. Possible values are the same as in
SABLE.
</doc>
</attribute>
</track-spec>

<track-spec name="deictic" type="primary" color-attr="phase">
<doc>
The good, old pointing gesture. A pointing gesture can
be directed at a concrete entity (person, place, object) or at
something abstract (pointing into gesture space to refer to
something said before or to refer to a distant place,

49

e.g. another country/university). Most interesting attribute
is where.
</doc>
<attribute name="phase" valuetype="phaseType">
<doc>
My phase description is based on the phases postulated by
Kendon and McNeill (1992), later on extended by Kita et
al. (1999).
</doc>
</attribute>
<attribute name="where" display="true">
<doc>
The object/aim of the pointing gesture.
</doc>
<value-el>
addressee
<doc>
Subject points to addressed person/object.
</doc>
</value-el>
<value-el>
space
<doc>
Subject points somewhere in gesture space, points to
nothing concrete that is present in the room.
</doc>
</value-el>
<value-el>
self
<doc>
Subject points to him/herself usually by putting the hand
on his/her chest.
</doc>
</value-el>
<value-el>
2directions
<doc>
Points to two different directions with his/her two hands,
e.g. to himself and to addressee.
</doc>
</value-el>
</attribute>
</track-spec>

</body>

50

D Annotation File Sample

This is an short excerpt of a sample annotation to show the syntax of an
anvil annotation file (extension “anvil”).

Note that the information of type and ref in the track tag are obsolete
because these are specified in the associated specification file (these features
are a relic from former times when there was no specification file — left them
because they are possibly useful for file conversion tools). Anvil will not
complain if this information is falsely specified in this file but will write the
correct data back when saving the annotation.

<?xml version="1.0" encoding="IS0-8859-1"7>
<annotation>
<head>
<specification src="C:\development\anvil\spec\litqua.xml" />
<video src="c:\Promotion\LitQua\quicktime\lq3-kara.mov" />
</head>

<body>
<track name="trl" type="primary">

<el index="0" start="0.501372814" end="0.686400651">
<attribute name="token">ich</attribute>

</el>

<el index="1" start="0.7578307980000001" end="1.320613741">
<attribute name="token">denke</attribute>
<attribute name="emphasis">strong</attribute>

</el>

<el index="2" start="1.8141310210000001" end="2.212828874">
<attribute name="token">dass</attribute>

</el>

</track>
<track name="ling.rst" type="span" ref="trl">
<el index="0" start="0" end="1">
<attribute name="relationl">attribution</attribute>
<attribute name="directionl">forward</attribute>
</el>
<el index="1" start="2" end="7">
<attribute name="relationl">evaluation</attribute>
<attribute name="directionl">forward</attribute>
</el>

</track>

<track name="gesture.beat" type="primary">

<el index="b" start="46.159999847" end="46.560001373000006">
<attribute name="phase">prep</attribute>

o1

<attribute

<attribute

<attribute

<attribute

<attribute
</el>

</track>

name="motion-dir">vertical</attribute>
name="location-side">outer-right</attribute>
name="location-height">chest</attribute>
name="handedness">right</attribute>
name="handshape">halfopen-flat</attribute>

<track name="gesture.deictic" type="primary">

<el index="1"

<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<comment>

refering
</comment>

</el>

</track>

</body>
</annotation>

start="5.840000152" end="6.159999847000001">
name="phase">stroke</attribute>
name="where">space</attribute>
name="location-height">head</attribute>
name="location-side">right</attribute>
name="handedness">right</attribute>

name="handshape">index-out</attribute>

to "Buch"

92

