
GStreamer Application Development
Manual (0.10.4)

Wim Taymans

Steve Baker

Andy Wingo

Ronald S. Bultje

Stefan Kost

GStreamer Application Development Manual (0.10.4)
by Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje, and Stefan Kost

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0or later (the latest version

is presently available at http://www.opencontent.org/opl.shtml (http://www.opencontent.org/opl.shtml)).

Table of Contents
I. Introduction ...vii

1. Preface..1
1.1. What is GStreamer?...1
1.2. Who Should Read This Manual?...1
1.3. Preliminary Reading..1
1.4. Structure of this Manual..2

2. Motivation & Goals..3
2.1. Current problems...3
2.2. The design goals..5

3. Foundations..8
3.1. Elements..8
3.2. Bins and pipelines..8
3.3. Pads..8

II. Building an Application ...10

4. Initializing GStreamer..11
4.1. Simple initialization...11
4.2. The GOption interface...11

5. Elements...14
5.1. What are elements?..14
5.2. Creating aGstElement ..16
5.3. Using an element as aGObject ..18
5.4. More about element factories..19
5.5. Linking elements...20
5.6. Element States...21

6. Bins..23
6.1. What are bins...23
6.2. Creating a bin..23
6.3. Custom bins...24

7. Bus...26
7.1. How to use a bus..26
7.2. Message types..27

8. Pads and capabilities..29
8.1. Pads..29
8.2. Capabilities of a pad..31
8.3. What capabilities are used for...33
8.4. Ghost pads...35

9. Buffers and Events...38
9.1. Buffers...38
9.2. Events..38

10. Your first application..40
10.1. Hello world..40
10.2. Compiling and Running helloworld.c...43
10.3. Conclusion...43

iii

III. Advanced GStreamer concepts..45

11. Position tracking and seeking..46
11.1. Querying: getting the position or length of a stream...46
11.2. Events: seeking (and more)...47

12. Metadata...49
12.1. Metadata reading...49
12.2. Tag writing...49

13. Interfaces..50
13.1. The URI interface..50
13.2. The Mixer interface...50
13.3. The Tuner interface..50
13.4. The Color Balance interface..51
13.5. The Property Probe interface...51
13.6. The X Overlay interface..51

14. Clocks in GStreamer..53
14.1. Clock providers...53
14.2. Clock slaves...53

15. Dynamic Controllable Parameters...54
15.1. Getting Started...54
15.2. Setting up parameter control...54

16. Threads...56
16.1. When would you want to force a thread?..56
16.2. Scheduling in GStreamer...57

17. Autoplugging...58
17.1. MIME-types as a way to identity streams...58
17.2. Media stream type detection..59
17.3. Plugging together dynamic pipelines..61

18. Pipeline manipulation..67
18.1. Data probing..67
18.2. Manually adding or removing data from/to a pipeline..69
18.3. Embedding static elements in your application...71

IV. Higher-level interfaces for GStreamer applications...74

19. Components...75
19.1. Playbin...75
19.2. Decodebin..76
19.3. GstEditor..79

20. XML in GStreamer..80
20.1. Turning GstElements into XML..80
20.2. Loading a GstElement from an XML file..81
20.3. Adding custom XML tags into the core XML data...82

V. Appendices...85

21. Things to check when writing an application..86
21.1. Good programming habits...86
21.2. Debugging...86
21.3. Conversion plugins..87
21.4. Utility applications provided with GStreamer...87

22. Porting 0.8 applications to 0.10...89

iv

22.1. List of changes...89
23. Integration..91

23.1. Linux and UNIX-like operating systems...91
23.2. GNOME desktop...91
23.3. KDE desktop...93
23.4. OS X..93
23.5. Windows..93

24. Licensing advisory...94
24.1. How to license the applications you build with GStreamer..94

25. Windows support..96
25.1. Building GStreamer under Win32...96
25.2. Installation on the system..96

26. Quotes from the Developers...98

v

List of Figures
5-1. Visualisation of a source element...14
5-2. Visualisation of a filter element..15
5-3. Visualisation of a filter element with more than one output pad..15
5-4. Visualisation of a sink element...15
5-5. Visualisation of three linked elements..20
6-1. Visualisation of a bin with some elements in it..23
8-1. Visualisation of aGstBin (../../gstreamer/html/GstBin.html) element without ghost pads..............35
8-2. Visualisation of aGstBin (../../gstreamer/html/GstBin.html) element with a ghostpad..................36
10-1. The "hello world" pipeline...43
16-1. a two-threaded decoder with a queue...56
17-1. The Hello world pipeline with MIME types..58

vi

I. Introduction
GStreamer is an exremely powerful and versatile framework for creating streaming media applications.
Many of the virtues of the GStreamer framework come from its modularity: GStreamer can seamlessly
incorporate new plugin modules. But because modularity andpower often come at a cost of greater
complexity (consider, for example, CORBA (http://www.omg.org/)), writing new applications is not
always easy.

This guide is intended to help you understand the GStreamer framework (version 0.10.4) so you can
develop applications based on it. The first chapters will focus on development of a simple audio player,
with much effort going into helping you understand GStreamer concepts. Later chapters will go into
more advanced topics related to media playback, but also at other forms of media processing (capture,
editing, etc.).

Chapter 1. Preface

This chapter gives you an overview of the technologies described in this book.

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media applications. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as well as some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any type of streaming multimedia
application. The GStreamer framework is designed to make iteasy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, and can process any kind of data flow. The pipeline
design is made to have little overhead above what the appliedfilters induce. This makes GStreamer a
good framework for designing even high-end audio applications which put high demands on latency.

One of the the most obvious uses of GStreamer is using it to build a media player. GStreamer already
includes components for building a media player that can support a very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, mod,and more. GStreamer, however, is much
more than just another media player. Its main advantages arethat the pluggable components can be
mixed and matched into arbitrary pipelines so that it’s possible to write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the various codec and other functionality. The
plugins can be linked and arranged in a pipeline. This pipeline defines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pipeline libraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework for plugins, data flow and media type
handling/negotiation. It also provides an API to write applications using the various plugins.

1.2. Who Should Read This Manual?

This book is about GStreamer from a developer’s point of view; it describes how to write a GStreamer
application using the GStreamer libraries and tools. For anexplanation about writing plugins, we suggest
the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html).

1

Chapter 1. Preface

1.3. Preliminary Reading

In order to understand this manual, you will need to have a basic understanding of the C language. Since
GStreamer adheres to the GObject programming model, this guide also assumes that you understand the
basics of GObject (http://developer.gnome.org/doc/API/2.0/gobject/index.html) programming. You may
also want to have a look at Eric Harlow’s bookDeveloping Linux Applications with GTK+ and GDK.

In addition you might want to read theGStreamer Plugin Writer’s Guideafter this manual. Also check
out the other documentation available on the GStreamer web site
(http://gstreamer.freedesktop.org/documentation/).

1.4. Structure of this Manual

To help you navigate through this guide, it is divided into several large parts. Each part addresses a
particular broad topic concerning GStreamer appliction development. The parts of this guide are laid out
in the following order:

Part I inGStreamer Application Development Manual (0.10.4)gives you an overview of GStreamer’s
motivation design goals.

Part II inGStreamer Application Development Manual (0.10.4)rapidly covers the basics of GStreamer
application programming. At the end of that chapter, you should be able to build your own audio player
using GStreamer

In Part III in GStreamer Application Development Manual (0.10.4), we will move on to complicated
subjects which make GStreamer stand out of its competitors.We will discuss application-pipeline
interaction using dynamic parameters and interfaces, we will discuss threading and threaded pipelines,
scheduling and clocks (and synchronization). Most of thosetopics are not just there to introduce you to
their API, but primarily to give a deeper insight in solving application programming problems with
GStreamer and understanding their concepts.

Next, inPart IV inGStreamer Application Development Manual (0.10.4), we will go into higher-level
programming APIs for GStreamer. You don’t exactly need to know all the details from the previous parts
to understand this, but you will need to understand basic GStreamer concepts nevertheless. We will,
amongst others, discuss XML, playbin and autopluggers.

In Part V inGStreamer Application Development Manual (0.10.4), you will find some random
information on integrating with GNOME, KDE, OS X or Windows,some debugging help and general
tips to improve and simplify GStreamer programming.

2

Chapter 2. Motivation & Goals

Linux has historically lagged behind other operating systems in the multimedia arena. Microsoft’s
Windows™ and Apple’s MacOS™ both have strong support for multimedia devices, multimedia content
creation, playback, and realtime processing. Linux, on theother hand, has a poorly integrated collection
of multimedia utilities and applications available, whichcan hardly compete with the professional level
of software available for MS Windows and MacOS.

GStreamer was designed to provide a solution to the current Linux media problems.

2.1. Current problems

We describe the typical problems in today’s media handling on Linux.

2.1.1. Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt throughtheir collection of sound file players in
order to play the tens of sound file formats in wide use today. Most of these players basically
reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in their application must use crude hacks to run
an external video player. There is no library available thata developer can use to create a custom media
player.

2.1.2. ’One goal’ media players/libraries

Your typical MPEG player was designed to play MPEG video and audio. Most of these players have
implemented a complete infrastructure focused on achieving their only goal: playback. No provisions
were made to add filters or special effects to the video or audio data.

If you want to convert an MPEG-2 video stream into an AVI file, your best option would be to take all of
the MPEG-2 decoding algorithms out of the player and duplicate them into your own AVI encoder.
These algorithms cannot easily be shared across applications.

Attempts have been made to create libraries for handling various media types. Because they focus on a
very specific media type (avifile, libmpeg2, ...), significant work is needed to integrate them due to a lack
of a common API. GStreamer allows you to wrap these librarieswith a common API, which significantly
simplifies integration and reuse.

3

Chapter 2. Motivation & Goals

2.1.3. Non unified plugin mechanisms

Your typical media player might have a plugin for different media types. Two media players will
typically implement their own plugin mechanism so that the codecs cannot be easily exchanged. The
plugin system of the typical media player is also very tailored to the specific needs of the application.

The lack of a unified plugin mechanism also seriously hindersthe creation of binary only codecs. No
company is willing to port their code to all the different plugin mechanisms.

While GStreamer also uses it own plugin system it offers a very rich framework for the plugin developer
and ensures the plugin can be used in a wide range of applications, transparently interacting with other
plugins. The framework that GStreamer provides for the plugins is flexible enough to host even the most
demanding plugins.

2.1.4. Poor user experience

Because of the problems mentioned above, application authors have so far often been urged to spend a
considerable amount of time in writing their own backends, plugin mechanisms and so on. The result has
often been, unfortunately, that both the backend as well as the user interface were only half-finished.
Demotivated, the application authors would start rewriting the whole thing and complete the circle. This
leads to apoor end user experience.

2.1.5. Provision for network transparency

No infrastructure is present to allow network transparent media handling. A distributed MPEG encoder
will typically duplicate the same encoder algorithms foundin a non-distributed encoder.

No provisions have been made for technologies such as the GNOME object embedding using Bonobo
(http://developer.gnome.org/arch/component/bonobo.html).

The GStreamer core does not use network transparent technologies at the lowest level as it only adds
overhead for the local case. That said, it shouldn’t be hard to create a wrapper around the core
components. There are tcp plugins now that implement a GStreamer Data Protocol that allows pipelines
to be slit over TCP. These are located in the gst-plugins module directory gst/tcp.

2.1.6. Catch up with the Windows™ world

We need solid media handling if we want to see Linux succeed onthe desktop.

4

Chapter 2. Motivation & Goals

We must clear the road for commercially backed codecs and multimedia applications so that Linux can
become an option for doing multimedia.

2.2. The design goals

We describe what we try to achieve with GStreamer.

2.2.1. Clean and powerful

GStreamer wants to provide a clean interface to:

• The application programmer who wants to build a media pipeline. The programmer can use an
extensive set of powerful tools to create media pipelines without writing a single line of code.
Performing complex media manipulations becomes very easy.

• The plugin programmer. Plugin programmers are provided a clean and simple API to create
self-contained plugins. An extensive debugging and tracing mechanism has been integrated.
GStreamer also comes with an extensive set of real-life plugins that serve as examples too.

2.2.2. Object oriented

GStreamer adheres to the GLib 2.0 object model. A programmerfamiliar with GLib 2.0 or older versions
of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object properties.

All objects can be queried at runtime for their various properties and capabilities.

GStreamer intends to be similar in programming methodologyto GTK+. This applies to the object
model, ownership of objects, reference counting, ...

2.2.3. Extensible

All GStreamer Objects can be extended using the GObject inheritance methods.

All plugins are loaded dynamically and can be extended and upgraded independently.

5

Chapter 2. Motivation & Goals

2.2.4. Allow binary only plugins

Plugins are shared libraries that are loaded at runtime. Since all the properties of the plugin can be set
using the GObject properties, there is no need (and in fact noway) to have any header files installed for
the plugins.

Special care has been taken to make plugins completely self-contained. All relevant aspects of plugins
can be queried at run-time.

2.2.5. High performance

High performance is obtained by:

• using GLib’sg_mem_chunk and fast non-blocking allocation algorithms where possible to minimize
dynamic memory allocation.

• extremely light-weight links between plugins. Data can travel the pipeline with minimal overhead.
Data passing between plugins only involves a pointer dereference in a typical pipeline.

• providing a mechanism to directly work on the target memory.A plugin can for example directly write
to the X server’s shared memory space. Buffers can also pointto arbitrary memory, such as a sound
card’s internal hardware buffer.

• refcounting and copy on write minimize usage of memcpy. Sub-buffers efficiently split buffers into
manageable pieces.

• the use of cothreads to minimize the threading overhead. Cothreads are a simple and fast user-space
method for switching between subtasks. Cothreads were measured to consume as little as 600 cpu
cycles.

• allowing hardware acceleration by using specialized plugins.

• using a plugin registry with the specifications of the plugins so that the plugin loading can be delayed
until the plugin is actually used.

• all critical data passing is free of locks and mutexes.

2.2.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. It only knows about bytes and blocks, and only
contains basic elements. The core of GStreamer is functional enough to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugins external to the core. These tell the core
how to handle specific types of media.

6

Chapter 2. Motivation & Goals

2.2.7. Provide a framework for codec experimentation

GStreamer also wants to be an easy framework where codec developers can experiment with different
algorithms, speeding up the development of open and free multimedia codecs like Theora and Vorbis
(http://www.xiph.org/ogg/index.html).

7

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts of GStreamer. Understanding these concepts will
be important in reading any of the rest of this guide, all of them assume understanding of these basic
concepts.

3.1. Elements

An elementis the most important class of objects in GStreamer. You willusually create a chain of
elements linked together and let data flow through this chainof elements. An element has one specific
function, which can be the reading of data from a file, decoding of this data or outputting this data to
your sound card (or anything else). By chaining together several such elements, you create apipelinethat
can do a specific task, for example media playback or capture.GStreamer ships with a large collection of
elements by default, making the development of a large variety of media applications possible. If needed,
you can also write new elements. That topic is explained in great deal in theGStreamer Plugin Writer’s
Guide.

3.2. Bins and pipelines

A bin is a container for a collection of elements. A pipeline is a special subtype of a bin that allows
execution of all of its contained child elements. Since binsare subclasses of elements themselves, you
can mostly control a bin as if it where an element, thereby abstracting away a lot of complexity for your
application. You can, for example change state on all elements in a bin by changing the state of that bin
itself. Bins also forward bus messages from their containedchildren (such as error messages, tag
messages or EOS messages).

A pipeline is a top-level bin. As you set it to PAUSED or PLAYING state, data flow will start and media
processing will take place. Once started, pipelines will run in a separate thread until you stop them or the
end of the data stream is reached.

3.3. Pads

Padsare used to negotiate links and data flow between elements in GStreamer. A pad can be viewed as a
“plug” or “port” on an element where links may be made with other elements, and through which data
can flow to or from those elements. Pads have specific data handling capabilities: A pad can restrict the
type of data that flows through it. Links are only allowed between two pads when the allowed data types
of the two pads are compatible. Data types are negotiated between pads using a process calledcaps
negotiation. Data types are described as aGstCaps.

8

Chapter 3. Foundations

An analogy may be helpful here. A pad is similar to a plug or jack on a physical device. Consider, for
example, a home theater system consisting of an amplifier, a DVD player, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed because both devices have audio jacks, and linking
the projector to the DVD player is allowed because both devices have compatible video jacks. Links
between the projector and the amplifier may not be made because the projector and amplifier have
different types of jacks. Pads in GStreamer serve the same purpose as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way through alink between elements. Data flows out
of one element through one or moresource pads, and elements accept incoming data through one or
moresink pads. Source and sink elements have only source and sink pads, respectively. Data usually
means buffers (described by theGstBuffer
(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html//gstreamer-GstBuffer.html)
object) and events (described by theGstEvent
(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html//gstreamer-GstEvent.html)
object).

9

II. Building an Application
In these chapters, we will discuss the basic concepts of GStreamer and the most-used objects, such as
elements, pads and buffers. We will use a visual representation of these objects so that we can visualize
the more complex pipelines you will learn to build later on. You will get a first glance at the GStreamer
API, which should be enough for building elementary applications. Later on in this part, you will also
learn to build a basic command-line application.

Note that this part will give a look into the low-level API andconcepts of GStreamer. Once you’re going
to build applications, you might want to use higher-level APIs. Those will be discussed later on in this
manual.

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply includegst/gst.h to get access to the library
functions. Besides that, you will also need to intialize theGStreamer library.

4.1. Simple initialization

Before the GStreamer libraries can be used,gst_init has to be called from the main application. This
call will perform the necessary initialization of the library as well as parse the GStreamer-specific
command line options.

A typical program1 would have code to initialize GStreamer that looks like this:

Example 4-1. Initializing GStreamer

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

guint major, minor, micro;

gst_init (&argc, &argv);

gst_version (&major, &minor, µ);
printf ("This program is linked against GStreamer %d.%d.%d\n",

major, minor, micro);

return 0;
}

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_VERSION_MICRO macros to
get the GStreamer version you are building against, or use the functiongst_version to get the version
your application is linked against. GStreamer currently uses a scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

It is also possible to call thegst_init function with two NULL arguments, in which case no command
line options will be parsed by GStreamer.

11

Chapter 4. Initializing GStreamer

4.2. The GOption interface

You can also use a GOption table to initialize your own parameters as shown in the next example:

Example 4-2. Initialisation using the GOption interface

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

gboolean silent = FALSE;
gchar *savefile = NULL;
GOptionContext *ctx;
GError *err = NULL;
GOptionEntry entries[] = {

{ "silent", ’s’, 0, G_OPTION_ARG_NONE, &silent, 0,
"do not output status information", NULL },

{ "output", ’o’, 0, G_OPTION_ARG_STRING, &savefile, 0,
"save xml representation of pipeline to FILE and exit", "FILE" },

{ NULL }
};

ctx = g_option_context_new ("- Your application");
g_option_context_add_main_entries (ctx, entries, GETTEXT_PACKAGE);
g_option_context_add_group (ctx, gst_init_get_option_group ());
if (!g_option_context_parse (ctx, &argc, &argv, &err)) {

g_print ("Failed to initialize: %s\n", err->message);
g_error_free (err);
return 1;

}

printf ("Run me with --help to see the Application options appended.\n");

return 0;
}

As shown in this fragment, you can use a GOption
(http://developer.gnome.org/doc/API/2.0/glib/glib-Commandline-option-parser.html) table to define your
application-specific command line options, and pass this table to the GLib initialization function along
with the option group returned from the functiongst_init_get_option_group. Your application
options will be parsed in addition to the standard GStreameroptions.

12

Chapter 4. Initializing GStreamer

Notes
1. The code for this example is automatically extracted fromthe documentation and built under

examples/manual in the GStreamer tarball.

13

Chapter 5. Elements

The most important object in GStreamer for the application programmer is theGstElement
(../../gstreamer/html/GstElement.html) object. An element is the basic building block for a media
pipeline. All the different high-level components you willuse are derived fromGstElement. Every
decoder, encoder, demuxer, video or audio output is in fact aGstElement

5.1. What are elements?

For the application programmer, elements are best visualized as black boxes. On the one end, you might
put something in, the element does something with it and something else comes out at the other side. For
a decoder element, ifor example, you’d put in encoded data, and the element would output decoded data.
In the next chapter (seePads and capabilities), you will learn more about data input and output in
elements, and how you can set that up in your application.

5.1.1. Source elements

Source elements generate data for use by a pipeline, for example reading from disk or from a sound card.
Figure 5-1shows how we will visualise a source element. We always draw asource pad to the right of
the element.

Figure 5-1. Visualisation of a source element

src

source_element

Source elements do not accept data, they only generate data.You can see this in the figure because it only
has a source pad (on the right). A source pad can only generatedata.

5.1.2. Filters, convertors, demuxers, muxers and codecs

Filters and filter-like elements have both input and outputspads. They operate on data that they receive
on their input (sink) pads, and will provide data on their output (source) pads. Examples of such elements
are a volume element (filter), a video scaler (convertor), anOgg demuxer or a Vorbis decoder.

14

Chapter 5. Elements

Filter-like elements can have any number of source or sink pads. A video demuxer, for example, would
have one sink pad and several (1-N) source pads, one for each elementary stream contained in the
container format. Decoders, on the other hand, will only have one source and sink pads.

Figure 5-2. Visualisation of a filter element

src

filter

sink

Figure 5-2shows how we will visualise a filter-like element. This specific element has one source and
one sink element. Sink pads, receiving input data, are depicted at the left of the element; source pads are
still on the right.

Figure 5-3. Visualisation of a filter element with more than one output pad

demuxer

sink

video

audio

Figure 5-3shows another filter-like element, this one having more thanone output (source) pad. An
example of one such element could, for example, be an Ogg demuxer for an Ogg stream containing both
audio and video. One source pad will contain the elementary video stream, another will contain the
elementary audio stream. Demuxers will generally fire signals when a new pad is created. The
application programmer can then handle the new elementary stream in the signal handler.

5.1.3. Sink elements

Sink elements are end points in a media pipeline. They acceptdata but do not produce anything. Disk
writing, soundcard playback, and video output would all be implemented by sink elements.Figure 5-4
shows a sink element.

15

Chapter 5. Elements

Figure 5-4. Visualisation of a sink element

sink_element

sink

5.2. Creating a GstElement

The simplest way to create an element is to usegst_element_factory_make ()

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-make). This function takes a factory nameand an element name for the newly created
element. The name of the element is something you can use later on to look up the element in a bin, for
example. The name will also be used in debug output. You can pass NULL as the name argument to get a
unique, default name.

When you don’t need the element anymore, you need to unref it usinggst_object_unref ()

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstObject.html#gst-object-
unref). This decreases the reference count for the element by 1. An element has a refcount of 1 when it
gets created. An element gets destroyed completely when therefcount is decreased to 0.

The following example1 shows how to create an element namedsourcefrom the element factory named
fakesrc. It checks if the creation succeeded. After checking, it unrefs the element.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElement *element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");
if (!element) {

g_print ("Failed to create element of type ’fakesrc’\n");
return -1;

}

16

Chapter 5. Elements

gst_object_unref (GST_OBJECT (element));

return 0;
}

gst_element_factory_make is actually a shorthand for a combination of two functions. A
GstElement

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html) object is
created from a factory. To create the element, you have to getaccess to aGstElementFactory
(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html)
object using a unique factory name. This is done withgst_element_factory_find ()

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-find).

The following code fragment is used to get a factory that can be used to create thefakesrcelement, a fake
data source. The functiongst_element_factory_create ()

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-create) will use the element factory to create an element with the given
name.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElementFactory *factory;
GstElement * element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element, method #2 */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {

g_print ("Failed to find factory of type ’fakesrc’\n");
return -1;

}
element = gst_element_factory_create (factory, "source");
if (!element) {

g_print ("Failed to create element, even though its factory exists!\n");
return -1;

}

gst_object_unref (GST_OBJECT (element));

return 0;
}

17

Chapter 5. Elements

5.3. Using an element as a GObject

A GstElement

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html) can have
several properties which are implemented using standardGObject properties. The usualGObject
methods to query, set and get property values andGParamSpecs are therefore supported.

EveryGstElement inherits at least one property from its parentGstObject: the "name" property. This
is the name you provide to the functionsgst_element_factory_make () or
gst_element_factory_create (). You can get and set this property using the functions
gst_object_set_name andgst_object_get_name or use theGObject property mechanism as
shown below.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElement *element;
gchar *name;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");

/* get name */
g_object_get (G_OBJECT (element), "name", &name, NULL);
g_print ("The name of the element is ’%s’.\n", name);
g_free (name);

gst_object_unref (GST_OBJECT (element));

return 0;
}

Most plugins provide additional properties to provide moreinformation about their configuration or to
configure the element.gst-inspectis a useful tool to query the properties of a particular element, it will
also use property introspection to give a short explanationabout the function of the property and about
the parameter types and ranges it supports. See the appendixfor details aboutgst-inspect.

18

Chapter 5. Elements

For more information aboutGObject properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/API/2.0/gobject/index.html) and an introduction to The Glib Object
system (http://le-hacker.org/papers/gobject/index.html).

A GstElement

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/gstreamer/html/GstElementFactory.html)
also provides variousGObject signals that can be used as a flexible callback mechanism. Here, too, you
can usegst-inspectto see which signals a specific elements supports. Together,signals and properties
are the most basic way in which elements and applications interact.

5.4. More about element factories

In the previous section, we briefly introduced theGstElementFactory

(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html) object
already as a way to create instances of an element. Element factories, however, are much more than just
that. Element factories are the basic types retrieved from the GStreamer registry, they describe all plugins
and elements that GStreamer can create. This means that element factories are useful for automated
element instancing, such as what autopluggers do, and for creating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor
(http://gstreamer.freedesktop.org/modules/gst-editor.html)) do.

5.4.1. Getting information about an element using a factory

Tools likegst-inspectwill provide some generic information about an element, such as the person that
wrote the plugin, a descriptive name (and a shortname), a rank and a category. The category can be used
to get the type of the element that can be created using this element factory. Examples of categories
includeCodec/Decoder/Video (video decoder),Codec/Encoder/Video (video encoder),
Source/Video (a video generator),Sink/Video (a video output), and all these exist for audio as well,
of course. Then, there’s alsoCodec/Demuxer andCodec/Muxer and a whole lot more.gst-inspectwill
give a list of all factories, andgst-inspect <factory-name>will list all of the above information, and a
lot more.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElementFactory *factory;

/* init GStreamer */
gst_init (&argc, &argv);

/* get factory */
factory = gst_element_factory_find ("audiotestsrc");

19

Chapter 5. Elements

if (!factory) {
g_print ("You don’t have the ’audiotestsrc’ element installed!\n");
return -1;

}

/* display information */
g_print ("The ’%s’ element is a member of the category %s.\n"

"Description: %s\n",
gst_plugin_feature_get_name (GST_PLUGIN_FEATURE (factory)),
gst_element_factory_get_klass (factory),
gst_element_factory_get_description (factory));

return 0;
}

You can usegst_registry_pool_feature_list (GST_TYPE_ELEMENT_FACTORY) to get a list of
all the element factories that GStreamer knows about.

5.4.2. Finding out what pads an element can contain

Perhaps the most powerful feature of element factories is that they contain a full description of the pads
that the element can generate, and the capabilities of thosepads (in layman words: what types of media
can stream over those pads), without actually having to loadthose plugins into memory. This can be used
to provide a codec selection list for encoders, or it can be used for autoplugging purposes for media
players. All current GStreamer-based media players and autopluggers work this way. We’ll look closer at
these features as we learn aboutGstPad andGstCaps in the next chapter:Pads and capabilities

5.5. Linking elements

By linking a source element with zero or more filter-like elements and finally a sink element, you set up a
media pipeline. Data will flow through the elements. This is the basic concept of media handling in
GStreamer.

Figure 5-5. Visualisation of three linked elements

src sink sinksrc

filter sink_elementsource_element

20

Chapter 5. Elements

By linking these three elements, we have created a very simple chain of elements. The effect of this will
be that the output of the source element (“element1”) will beused as input for the filter-like element
(“element2”). The filter-like element will do something with the data and send the result to the final sink
element (“element3”).

Imagine the above graph as a simple Ogg/Vorbis audio decoder. The source is a disk source which reads
the file from disc. The second element is a Ogg/Vorbis audio decoder. The sink element is your
soundcard, playing back the decoded audio data. We will use this simple graph to construct an
Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElement *source, *filter, *sink;

/* init */
gst_init (&argc, &argv);

/* create elements */
source = gst_element_factory_make ("fakesrc", "source");
filter = gst_element_factory_make ("identity", "filter");
sink = gst_element_factory_make ("fakesink", "sink");

/* link */
gst_element_link_many (source, filter, sink, NULL);

[..]

}

For more specific behaviour, there are also the functionsgst_element_link () and
gst_element_link_pads (). You can also obtain references to individual pads and link those using
variousgst_pad_link_* () functions. See the API references for more details.

5.6. Element States

After being created, an element will not actually perform any actions yet. You need to change elements
state to make it do something. GStreamer knows four element states, each with a very specific meaning.
Those four states are:

• GST_STATE_NULL: this is the default state. This state will deallocate all resources held by the element.

21

Chapter 5. Elements

• GST_STATE_READY: in the ready state, an element has allocated all of its global resources, that is,
resources that can be kept within streams. You can think about opening devices, allocating buffers and
so on. However, the stream is not opened in this state, so the stream positions is automatically zero. If
a stream was previously opened, it should be closed in this state, and position, properties and such
should be reset.

• GST_STATE_PAUSED: in this state, an element has opened the stream, but is not actively processing it.
An element is allowed to modify a stream’s position, read andprocess data and such to prepare for
playback as soon as state is changed to PLAYING, but it isnot allowed to play the data which would
make the clock run. In summary, PAUSED is the same as PLAYING but without a running clock.

Elements going into the PAUSED state should prepare themselves for moving over to the PLAYING
state as soon as possible. Video or audio outputs would, for example, wait for data to arrive and queue
it so they can play it right after the state change. Also, video sinks can already play the first frame
(since this does not affect the clock yet). Autopluggers could use this same state transition to already
plug together a pipeline. Most other elements, such as codecs or filters, do not need to explicitely do
anything in this state, however.

• GST_STATE_PLAYING: in the PLAYING state, an element does exactly the same as in the PAUSED
state, except that the clock now runs.

You can change the state of an element using the functiongst_element_set_state (). If you set an
element to another state, GStreamer will internally traverse all intermediate states. So if you set an
element from NULL to PLAYING, GStreamer will internally setthe element to READY and PAUSED
in between.

When moved toGST_STATE_PLAYING, pipelines will process data automatically. They do not need to
be iterated in any form. Internally, GStreamer will start threads that take this task on to them. GStreamer
will also take care of switching messages from the pipeline’s thread into the application’s own thread, by
using aGstBus
(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBus.html). SeeChapter 7
for details.

Notes
1. The code for this example is automatically extracted fromthe documentation and built under

examples/manual in the GStreamer tarball.

22

Chapter 6. Bins

A bin is a container element. You can add elements to a bin. Since a bin is an element itself, a bin can be
handled in the same way as any other element. Therefore, the whole previous chapter (Elements) applies
to bins as well.

6.1. What are bins

Bins allow you to combine a group of linked elements into one logical element. You do not deal with the
individual elements anymore but with just one element, the bin. We will see that this is extremely
powerful when you are going to construct complex pipelines since it allows you to break up the pipeline
in smaller chunks.

The bin will also manage the elements contained in it. It willfigure out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan generation is one of the most complicated
procedures in GStreamer. You will learn more about this process, called scheduling, inSection 16.2.

Figure 6-1. Visualisation of a bin with some elements in it

src sink sinksrc

element2 element3element1

bin

There are two specialized types of bins available to the GStreamer programmer:

• A pipeline: a generic container that allows scheduling of the containing elements. The toplevel bin has
to be a pipeline. Every application thus needs at least one ofthese. Applications can iterate pipelines
usinggst_bin_iterate () to make it process data while in the playing state.

• A thread: a bin that will be run in a separate execution thread. You will have to use this bin if you have
to carefully synchronize audio and video, or for buffering.You will learn more about threads in
Chapter 16.

23

Chapter 6. Bins

6.2. Creating a bin

Bins are created in the same way that other elements are created, i.e. using an element factory. There are
also convenience functions available (gst_bin_new (), gst_thread_new () and
gst_pipeline_new ()). To add elements to a bin or remove elements from a bin, you can use
gst_bin_add () andgst_bin_remove (). Note that the bin that you add an element to will take
ownership of that element. If you destroy the bin, the element will be dereferenced with it. If you remove
an element from a bin, it will be dereferenced automatically.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{

GstElement *bin, *pipeline, *source, *sink;

/* init */
gst_init (&argc, &argv);

/* create */
pipeline = gst_pipeline_new ("my_pipeline");
bin = gst_pipeline_new ("my_bin");
source = gst_element_factory_make ("fakesrc", "source");
sink = gst_element_factory_make ("fakesink", "sink");

/* set up pipeline */
gst_bin_add_many (GST_BIN (bin), source, sink, NULL);
gst_bin_add (GST_BIN (pipeline), bin);
gst_element_link (source, sink);

[..]

}

There are various functions to lookup elements in a bin. You can also get a list of all elements that a bin
contains using the functiongst_bin_get_list (). See the API references ofGstBin
(http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBin.html) for details.

6.3. Custom bins

The application programmer can create custom bins packed with elements to perform a specific task.
This allows you, for example, to write an Ogg/Vorbis decoderwith just the following lines of code:

int
main (int argc

char *argv[])

24

Chapter 6. Bins

{
GstElement *player;

/* init */
gst_init (&argc, &argv);

/* create player */
player = gst_element_factory_make ("oggvorbisplayer", "player");

/* set the source audio file */
g_object_set (player, "location", "helloworld.ogg", NULL);

/* start playback */
gst_element_set_state (GST_ELEMENT (player), GST_STATE_PLAYING);

[..]
}

Custom bins can be created with a plugin or an XML description. You will find more information about
creating custom bin in the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html).

Examples of such custom bins are the playbin and decodebin elements from gst-plugins-base
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/index.html).

25

Chapter 7. Bus

A bus is a simple system that takes care of forwarding messages from the pipeline threads to an
application in its own thread context. The advantage of a busis that an application does not need to be
thread-aware in order to use GStreamer, even though GStreamer itself is heavily threaded.

Every pipeline contains a bus by default, so applications donot need to create a bus or anything. The
only thing applications should do is set a message handler ona bus, which is similar to a signal handler
to an object. When the mainloop is running, the bus will periodically be checked for new messages, and
the callback will be called when any message is available.

7.1. How to use a bus

To use a bus, attach a message handler to the default bus of a pipeline usinggst_bus_add_watch ().
This handler will be called whenever the pipeline emits a message to the bus. In this handler, check the
signal type (see next section) and do something accordingly. The return value of the handler should be
TRUE to remove the message from the bus.

#include <gst/gst.h>

static GMainLoop *loop;

static gboolean
my_bus_callback (GstBus *bus,

GstMessage *message,
gpointer data)

{
switch (GST_MESSAGE_TYPE (message)) {

case GST_MESSAGE_ERROR: {
GError *err;
gchar *debug;

gst_message_parse_error (message, &err, &debug);
g_print ("Error: %s\n", err->message);
g_error_free (err);
g_free (debug);

g_main_loop_quit (loop);
break;

}
case GST_MESSAGE_EOS:
/* end-of-stream */
g_main_loop_quit (loop);
break;

default:
/* unhandled message */
break;

26

Chapter 7. Bus

}

/* remove message from the queue */
return TRUE;

}

gint
main (gint argc,

gchar *argv[])
{

GMainLoop *loop;
GstElement *pipeline;

/* init */
gst_init (&argc, &argv);

/* create pipeline, add handler */
pipeline = gst_pipeline_new ("my_pipeline");
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (pipeline)),

my_bus_callback, NULL);

[..]

/* in the mainloop, all messages posted to the bus by the pipeline

* will automatically be sent to our callback. */
loop = g_main_loop_new (NULL, FALSE);
g_main_loop_run (loop);

return 0;
}

It is important to know that the handler will be called in the thread context of the mainloop. This means
that the interaction between the pipeline and application over the bus isasynchronous, and thus not
suited for some real-time purposes, such as cross-fading between audio tracks, doing (theoretically)
gapless playback or video effects. All such things should bedone in the pipeline context, which is easiest
by writing a GStreamer plug-in. It is very useful for its primary purpose, though: passing messages from
pipeline to application.

7.2. Message types

GStreamer has a few pre-defined message types that can be passed over the bus. The messages are
extendible, however. Plug-ins can define additional messages, and applications can decide to either have
specific code for those or ignore them. All applications are strongly recommended to at least handle error
messages by providing visual feedback to the user.

27

Chapter 7. Bus

All messages have a message source, type and timestamp. The message source can be used to see which
element emitted the message. For some messages, for example, only the ones emitted by the top-level
pipeline will be interesting to most applications (e.g. forstate-change notifications). Below is a list of all
messages and a short explanation of what they do and how to parse message-specific content.

• Error, warning and information notifications: those are used by elements if a message should be shown
to the user about the state of the pipeline. Error messages are fatal and terminate the data-passing. The
error should be repaired to resume pipeline acvitity. Warnings are not fatal, but imply a problem
nevertheless. Information messages are for non-problem notifications. All those messages contain a
GError with the main error type and message, and optionally a debug string. Both can be extracted
usinggst_message_parse_error (), _parse_warning () and_parse_info (). Both error
and debug string should be free’ed after use.

• End-of-stream notification: this is emitted when the streamhas ended. The state of the pipeline will
not change, but further media handling will stall. Applications can use this to skip to the next song in
their playlist. After end-of-stream, it is also possible toseek back in the stream. Playback will then
continue automatically. This message has no specific arguments.

• Tags: emitted when metadata was found in the stream. This canbe emitted multiple times for a
pipeline (e.g. once for descriptive metadata such as artistname or song title, and another one for
stream-information, such as samplerate and bitrate). Applications should cache metadata internally.
gst_message_parse_tag () should be used to parse the taglist, which should be dereferenced
after use.

• State-changes: emitted after a successful state change.gst_message_parse_state_changed ()

can be used to parse the old and new state of this transition.

• Buffering: emitted during caching of network-streams. Onecan manually extract the progress (in
percent) from the message by extracting the “buffer-percent” property from the structure returned by
gst_message_parse_structure ().

• Other application-specific messages: any information on those can be extracted by getting a structure
(see above) and reading properties. In most cases, such messages can conveniently be ignored.

28

Chapter 8. Pads and capabilities

As we have seen inElements, the pads are the element’s interface to the outside world. Data streams
from one element’s source pad to another element’s sink pad.The specific type of media that the element
can handle will be exposed by the pad’s capabilities. We willtalk more on capabilities later in this
chapter (seeSection 8.2).

8.1. Pads

A pad type is defined by two properties: its direction and its availability. As we’ve mentioned before,
GStreamer defines two pad directions: source pads and sink pads. This terminology is defined from the
view of within the element: elements receive data on their sink pads and generate data on their source
pads. Schematically, sink pads are drawn on the left side of an element, whereas source pads are drawn
on the right side of an element. In such graphs, data flows fromleft to right.1

Pad directions are very simple compared to pad availability. A pad can have any of three availabilities:
always, sometimes and on request. The meaning of those threetypes is exactly as it says: always pads
always exist, sometimes pad exist only in certain cases (andcan disappear randomly), and on-request
pads appear only if explicitely requested by applications.

8.1.1. Dynamic (or sometimes) pads

Some elements might not have all of their pads when the element is created. This can happen, for
example, with an Ogg demuxer element. The element will read the Ogg stream and create dynamic pads
for each contained elementary stream (vorbis, theora) whenit detects such a stream in the Ogg stream.
Likewise, it will delete the pad when the stream ends. This principle is very useful for demuxer elements,
for example.

Running gst-inspect oggdemux will show that the element hasonly one pad: a sink pad called ’sink’. The
other pads are “dormant”. You can see this in the pad templatebecause there is an “Exists: Sometimes”
property. Depending on the type of Ogg file you play, the pads will be created. We will see that this is
very important when you are going to create dynamic pipelines. You can attach a signal handler to an
element to inform you when the element has created a new pad from one of its “sometimes” pad
templates. The following piece of code is an example of how todo this:

#include <gst/gst.h>

static void
cb_new_pad (GstElement *element,

GstPad *pad,
gpointer data)

{
gchar *name;

29

Chapter 8. Pads and capabilities

name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);

/* here, you would setup a new pad link for the newly created pad */
[..]

}

int
main (int argc,

char *argv[])
{

GstElement *pipeline, *source, *demux;
GMainLoop *loop;

/* init */
gst_init (&argc, &argv);

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");
source = gst_element_factory_make ("filesrc", "source");
g_object_set (source, "location", argv[1], NULL);
demux = gst_element_factory_make ("oggdemux", "demuxer");

/* you would normally check that the elements were created properly */

/* put together a pipeline */
gst_bin_add_many (GST_BIN (pipeline), source, demux, NULL);
gst_element_link_pads (source, "src", demux, "sink");

/* listen for newly created pads */
g_signal_connect (demux, "pad-added", G_CALLBACK (cb_new_pad), NULL);

/* start the pipeline */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
loop = g_main_loop_new (NULL, FALSE);
g_main_loop_run (loop);

[..]

}

8.1.2. Request pads

An element can also have request pads. These pads are not created automatically but are only created on
demand. This is very useful for multiplexers, aggregators and tee elements. Aggregators are elements
that merge the content of several input streams together into one output stream. Tee elements are the

30

Chapter 8. Pads and capabilities

reverse: they are elements that have one input stream and copy this stream to each of their output pads,
which are created on request. Whenever an application needsanother copy of the stream, it can simply
request a new output pad from the tee element.

The following piece of code shows how you can request a new output pad from a “tee” element:

static void
some_function (GstElement *tee)
{

GstPad * pad;
gchar *name;

pad = gst_element_get_request_pad (tee, "src%d");
name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);

/* here, you would link the pad */
[..]

/* and, after doing that, free our reference */
gst_object_unref (GST_OBJECT (pad));

}

Thegst_element_get_request_pad () method can be used to get a pad from the element based on
the name of the pad template. It is also possible to request a pad that is compatible with another pad
template. This is very useful if you want to link an element toa multiplexer element and you need to
request a pad that is compatible. The methodgst_element_get_compatible_pad () can be used to
request a compatible pad, as shown in the next example. It will request a compatible pad from an Ogg
multiplexer from any input.

static void
link_to_multiplexer (GstPad *tolink_pad,

GstElement *mux)
{

GstPad *pad;
gchar *srcname = gst_pad_get_name (tolink_pad), *sinkname;

pad = gst_element_get_compatible_pad (mux, tolink_pad);
gst_pad_link (tolinkpad, pad);
sinkname = gst_pad_get_name (pad);
gst_object_unref (GST_OBJECT (pad));

g_print ("A new pad %s was created and linked to %s\n", srcname, sinkname);
g_free (sinkname);
g_free (srcname);

}

31

Chapter 8. Pads and capabilities

8.2. Capabilities of a pad

Since the pads play a very important role in how the element isviewed by the outside world, a
mechanism is implemented to describe the data that can flow orcurrently flows through the pad by using
capabilities. Here, we will briefly describe what capabilities are and how to use them, enough to get an
understanding of the concept. For an in-depth look into capabilities and a list of all capabilities defined in
GStreamer, see the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html).

Capabilities are attached to pad templates and to pads. For pad templates, it will describe the types of
media that may stream over a pad created from this template. For pads, it can either be a list of possible
caps (usually a copy of the pad template’s capabilities), inwhich case the pad is not yet negotiated, or it is
the type of media that currently streams over this pad, in which case the pad has been negotiated already.

8.2.1. Dissecting capabilities

A pads capabilities are described in aGstCaps object. Internally, aGstCaps
(../../gstreamer/html/gstreamer-GstCaps.html) will contain one or moreGstStructure
(../../gstreamer/html/gstreamer-GstStructure.html) that will describe one media type. A negotiated pad
will have capabilities set that contain exactlyonestructure. Also, this structure will contain onlyfixed
values. These constraints are not true for unnegotiated pads or pad templates.

As an example, below is a dump of the capabilities of the “vorbisdec” element, which you will get by
runninggst-inspect vorbisdec. You will see two pads: a source and a sink pad. Both of these pads are
always available, and both have capabilities attached to them. The sink pad will accept vorbis-encoded
audio data, with the mime-type “audio/x-vorbis”. The source pad will be used to send raw (decoded)
audio samples to the next element, with a raw audio mime-type(either “audio/x-raw-int” or
“audio/x-raw-float”). The source pad will also contain properties for the audio samplerate and the
amount of channels, plus some more that you don’t need to worry about for now.

Pad Templates:
SRC template: ’src’

Availability: Always
Capabilities:
audio/x-raw-float

rate: [8000, 50000]
channels: [1, 2]

endianness: 1234
width: 32

buffer-frames: 0

SINK template: ’sink’
Availability: Always
Capabilities:
audio/x-vorbis

32

Chapter 8. Pads and capabilities

8.2.2. Properties and values

Properties are used to describe extra information for capabilities. A property consists of a key (a string)
and a value. There are different possible value types that can be used:

• Basic types, this can be pretty much anyGType registered with Glib. Those properties indicate a
specific, non-dynamic value for this property. Examples include:

• An integer value (G_TYPE_INT): the property has this exact value.

• A boolean value (G_TYPE_BOOLEAN): the property is either TRUE or FALSE.

• A float value (G_TYPE_FLOAT): the property has this exact floating point value.

• A string value (G_TYPE_STRING): the property contains a UTF-8 string.

• Range types areGTypes registered by GStreamer to indicate a range of possible values. They are used
for indicating allowed audio samplerate values or supported video sizes. The two types defined in
GStreamer are:

• An integer range value (GST_TYPE_INT_RANGE): the property denotes a range of possible integers,
with a lower and an upper boundary. The “vorbisdec” element,for example, has a rate property that
can be between 8000 and 50000.

• A float range value (GST_TYPE_FLOAT_RANGE): the property denotes a range of possible floating
point values, with a lower and an upper boundary.

• A list value (GST_TYPE_LIST): the property can take any value from a list of basic values given in
this list.

• An array value (GST_TYPE_FIXED_LIST): the property is an array of values. Each value in the array
is a full value on its own, too. All values in the array should be of the same elementary type. This
means that an array can contain any combination of integers,lists of integers, integer ranges together,
and the same for floats or strings, but it can not contain both floats and ints at the same time.

8.3. What capabilities are used for

Capabilities describe the type of data that is streamed between two pads, or that one pad (template)
supports. This makes them very useful for various purposes:

• Autoplugging: automatically finding elements to link to a pad based on its capabilities. All
autopluggers use this method.

• Compatibility detection: when two pads are linked, GStreamer can verify if the two pads are talking
about the same media type. The process of linking two pads andchecking if they are compatible is
called “caps negotiation”.

33

Chapter 8. Pads and capabilities

• Metadata: by reading the capabilities from a pad, applications can provide information about the type
of media that is being streamed over the pad, which is information about the stream that is currently
being played back.

• Filtering: an application can use capabilities to limit thepossible media types that can stream between
two pads to a specific subset of their supported stream types.An application can, for example, use
“filtered caps” to set a specific (non-fixed) video size that will stream between two pads. You will see
an example of filtered caps further on in this manual, inSection 18.2.

8.3.1. Using capabilities for metadata

A pad can have a set (i.e. one or more) of capabilities attached to it. You can get values of properties in a
set of capabilities by querying individual properties of one structure. You can get a structure from a caps
usinggst_caps_get_structure ():

static void
read_video_props (GstCaps *caps)
{

gint width, height;
const GstStructure *str;

str = gst_caps_get_structure (caps);
if (!gst_structure_get_int (str, "width", &width) ||

!gst_structure_get_int (str, "height", &height)) {
g_print ("No width/height available\n");
return;

}

g_print ("The video size of this set of capabilities is %dx%d\n",
width, height);

}

8.3.2. Creating capabilities for filtering

While capabilities are mainly used inside a plugin to describe the media type of the pads, the application
programmer also has to have basic understanding of capabilities in order to interface with the plugins,
especially when using filtered caps. When you’re using filtered caps or fixation, you’re limiting the
allowed types of media that can stream between two pads to a subset of their supported media types. You
do this by filtering using your own set of capabilities. In order to do this, you need to create your own
GstCaps. The simplest way to do this is by using the convenience function gst_caps_new_simple
():

static void
link_pads_with_filter (GstPad *one,

GstPad *other)
{

34

Chapter 8. Pads and capabilities

GstCaps *caps;

caps = gst_caps_new_simple ("video/x-raw-yuv",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL);

gst_pad_link_filtered (one, other, caps);
}

In some cases, you will want to create a more elaborate set of capabilities to filter a link between two
pads. Then, this function is too simplistic and you’ll want to use the methodgst_caps_new_full ():

static void
link_pads_with_filter (GstPad *one,

GstPad *other)
{

GstCaps *caps;

caps = gst_caps_new_full (
gst_structure_new ("video/x-raw-yuv",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),
gst_structure_new ("video/x-raw-rgb",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),
NULL);

gst_pad_link_filtered (one, other, caps);
}

See the API references for the full API ofGstStructure andGstCaps.

8.4. Ghost pads

You can see fromFigure 8-1how a bin has no pads of its own. This is where "ghost pads" comeinto play.

35

Chapter 8. Pads and capabilities

Figure 8-1. Visualisation of aGstBin (../../gstreamer/html/GstBin.html) element without ghost
pads

src sink sinksrc

element2 element3element1

bin

sink

A ghost pad is a pad from some element in the bin that can be accessed directly from the bin as well.
Compare it to a symbolic link in UNIX filesystems. Using ghostpads on bins, the bin also has a pad and
can transparently be used as an element in other parts of yourcode.

Figure 8-2. Visualisation of aGstBin (../../gstreamer/html/GstBin.html) element with a ghostpad

src sink sinksrc

element2 element3element1

bin

sink

sink

Figure 8-2is a representation of a ghost pad. The sink pad of element oneis now also a pad of the bin.
Obviously, ghost pads can be added to any type of elements, not just to aGstBin.

A ghostpad is created using the functiongst_ghost_pad_new ():

#include <gst/gst.h>

int
main (int argc,

36

Chapter 8. Pads and capabilities

char *argv[])
{

GstElement *bin, *sink;
GstPad *pad;

/* init */
gst_init (&argc, &argv);

/* create element, add to bin */
sink = gst_element_factory_make ("fakesink", "sink");
bin = gst_bin_new ("mybin");
gst_bin_add (GST_BIN (bin), sink);

/* add ghostpad */
pad = gst_element_get_pad (sink, "sink");
gst_element_add_pad (bin, gst_ghost_pad_new ("sink", pad));
gst_object_unref (GST_OBJECT (pad));

[..]

}

In the above example, the bin now also has a pad: the pad called“sink” of the given element. The bin
can, from here on, be used as a substitute for the sink element. You could, for example, link another
element to the bin.

Notes
1. In reality, there is no objection to data flowing from a source pad to the sink pad of an element

upstream (to the left of this element in drawings). Data will, however, always flow from a source pad
of one element to the sink pad of another.

37

Chapter 9. Buffers and Events

The data flowing through a pipeline consists of a combinationof buffers and events. Buffers contain the
actual pipeline data. Events contain control information,such as seeking information and end-of-stream
notifiers. All this will flow through the pipeline automatically when it’s running. This chapter is mostly
meant to explain the concept to you; you don’t need to do anything for this.

9.1. Buffers

Buffers contain the data that will flow through the pipeline you have created. A source element will
typically create a new buffer and pass it through a pad to the next element in the chain. When using the
GStreamer infrastructure to create a media pipeline you will not have to deal with buffers yourself; the
elements will do that for you.

A buffer consists, amongst others, of:

• A pointer to a piece of memory.

• The size of the memory.

• A timestamp for the buffer.

• A refcount that indicates how many elements are using this buffer. This refcount will be used to
destroy the buffer when no element has a reference to it.

The simple case is that a buffer is created, memory allocated, data put in it, and passed to the next
element. That element reads the data, does something (like creating a new buffer and decoding into it),
and unreferences the buffer. This causes the data to be free’ed and the buffer to be destroyed. A typical
video or audio decoder works like this.

There are more complex scenarios, though. Elements can modify buffers in-place, i.e. without allocating
a new one. Elements can also write to hardware memory (such asfrom video-capture sources) or
memory allocated from the X-server using XShm). Buffers canbe read-only, and so on.

9.2. Events

Events are control particles that are sent both up- and downstream in a pipeline along with buffers.
Downstream events notify fellow elements of stream states.Possible events include discontinuities,
flushes, end-of-stream notifications and so on. Upstream events are used both in application-element
interaction as well as event-event interaction to request changes in stream state, such as seeks. For
applications, only upstream events are important. Downstream events are just explained to get a more
complete picture of the data concept.

38

Chapter 9. Buffers and Events

Since most applications seek in time units, our example below does so too:

static void
seek_to_time (GstElement *element,

guint64 time_ns)
{

GstEvent *event;

event = gst_event_new_seek (GST_SEEK_METHOD_SET |
GST_FORMAT_TIME,
time_ns);

gst_element_send_event (element, event);
}

The functiongst_element_seek () is a shortcut for this. This is mostly just to show how it all works.

39

Chapter 10. Your first application

This chapter will summarize everything you’ve learned in the previous chapters. It describes all aspects
of a simple GStreamer application, including initializinglibraries, creating elements, packing elements
together in a pipeline and playing this pipeline. By doing all this, you will be able to build a simple
Ogg/Vorbis audio player.

10.1. Hello world

We’re going to create a simple first application, a simple Ogg/Vorbis command-line audio player. For
this, we will use only standard GStreamer components. The player will read a file specified on the
command-line. Let’s get started!

We’ve learned, inChapter 4, that the first thing to do in your application is to initialize GStreamer by
callinggst_init (). Also, make sure that the application includesgst/gst.h so all function names
and objects are properly defined. Use#include <gst/gst.h> to do that.

Next, you’ll want to create the different elements usinggst_element_factory_make (). For an
Ogg/Vorbis audio player, we’ll need a source element that reads files from a disk. GStreamer includes
this element under the name “filesrc”. Next, we’ll need something to parse the file and decoder it into
raw audio. GStreamer has two elements for this: the first parses Ogg streams into elementary streams
(video, audio) and is called “oggdemux”. The second is a Vorbis audio decoder, it’s conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads for each elementary stream, you’ll need to set a
“pad-added” event handler on the “oggdemux” element, like you’ve learned inSection 8.1.1, to link the
Ogg parser and the Vorbis decoder elements together. At last, we’ll also need an audio output element,
we will use “alsasink”, which outputs sound to an ALSA audio device.

The last thing left to do is to add all elements into a container element, aGstPipeline, and iterate this
pipeline until we’ve played the whole song. We’ve previously learned how to add elements to a container
bin in Chapter 6, and we’ve learned about element states inSection 5.6. We will also attach a message
handler to the pipeline bus so we can retrieve errors and detect the end-of-stream.

Let’s now add all the code together to get our very first audio player:

#include <gst/gst.h>

/*
* Global objects are usually a bad thing. For the purpose of this

* example, we will use them, however.

*/

GstElement *pipeline, *source, *parser, *decoder, *conv, *sink;

40

Chapter 10. Your first application

static gboolean
bus_call (GstBus *bus,

GstMessage *msg,
gpointer data)

{
GMainLoop *loop = data;

switch (GST_MESSAGE_TYPE (msg)) {
case GST_MESSAGE_EOS:
g_print ("End-of-stream\n");
g_main_loop_quit (loop);
break;

case GST_MESSAGE_ERROR: {
gchar *debug;
GError *err;

gst_message_parse_error (msg, &err, &debug);
g_free (debug);

g_print ("Error: %s\n", err->message);
g_error_free (err);

g_main_loop_quit (loop);
break;

}
default:
break;

}

return TRUE;
}

static void
new_pad (GstElement *element,

GstPad *pad,
gpointer data)

{
GstPad *sinkpad;
/* We can now link this pad with the audio decoder */
g_print ("Dynamic pad created, linking parser/decoder\n");

sinkpad = gst_element_get_pad (decoder, "sink");
gst_pad_link (pad, sinkpad);

gst_object_unref (sinkpad);
}

int
main (int argc,

char *argv[])
{

GMainLoop *loop;

41

Chapter 10. Your first application

/* initialize GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* check input arguments */
if (argc != 2) {

g_print ("Usage: %s <Ogg/Vorbis filename>\n", argv[0]);
return -1;

}

/* create elements */
pipeline = gst_pipeline_new ("audio-player");
source = gst_element_factory_make ("filesrc", "file-source");
parser = gst_element_factory_make ("oggdemux", "ogg-parser");
decoder = gst_element_factory_make ("vorbisdec", "vorbis-decoder");
conv = gst_element_factory_make ("audioconvert", "converter");
sink = gst_element_factory_make ("alsasink", "alsa-output");
if (!pipeline || !source || !parser || !decoder || !conv || !sink) {

g_print ("One element could not be created\n");
return -1;

}

/* set filename property on the file source. Also add a message

* handler. */
g_object_set (G_OBJECT (source), "location", argv[1], NULL);
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (pipeline)),

bus_call, loop);

/* put all elements in a bin */
gst_bin_add_many (GST_BIN (pipeline),

source, parser, decoder, conv, sink, NULL);

/* link together - note that we cannot link the parser and

* decoder yet, becuse the parser uses dynamic pads. For that,

* we set a pad-added signal handler. */
gst_element_link (source, parser);
gst_element_link_many (decoder, conv, sink, NULL);
g_signal_connect (parser, "pad-added", G_CALLBACK (new_pad), NULL);

/* Now set to playing and iterate. */
g_print ("Setting to PLAYING\n");
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_print ("Running\n");
g_main_loop_run (loop);

/* clean up nicely */
g_print ("Returned, stopping playback\n");
gst_element_set_state (pipeline, GST_STATE_NULL);
g_print ("Deleting pipeline\n");
gst_object_unref (GST_OBJECT (pipeline));

return 0;

42

Chapter 10. Your first application

}

We now have created a complete pipeline. We can visualise thepipeline as follows:

Figure 10-1. The "hello world" pipeline

pipeline

src

disk_source

sink src

decoder

sink

play_audio

10.2. Compiling and Running helloworld.c

To compile the helloworld example, use:gcc -Wall $(pkg-config --cflags --libs gstreamer-0.10)
helloworld.c -o helloworld. GStreamer makes use ofpkg-config to get compiler and linker flags needed
to compile this application. If you’re running a non-standard installation, make sure the
PKG_CONFIG_PATH environment variable is set to the correct location ($libdir/pkgconfig).
application against the uninstalled location.

You can run this example application with./helloworld file.ogg. Substitutefile.ogg with your
favourite Ogg/Vorbis file.

10.3. Conclusion

This concludes our first example. As you see, setting up a pipeline is very low-level but powerful. You
will see later in this manual how you can create a more powerful media player with even less effort using
higher-level interfaces. We will discuss all that in
Part IV inGStreamer Application Development Manual (0.10.4). We will first, however, go more
in-depth into more advanced GStreamer internals.

43

Chapter 10. Your first application

It should be clear from the example that we can very easily replace the “filesrc” element with some other
element that reads data from a network, or some other data source element that is better integrated with
your desktop environment. Also, you can use other decoders and parsers to support other media types.
You can use another audio sink if you’re not running Linux, but Mac OS X, Windows or FreeBSD, or
you can instead use a filesink to write audio files to disk instead of playing them back. By using an audio
card source, you can even do audio capture instead of playback. All this shows the reusability of
GStreamer elements, which is its greatest advantage.

44

III. Advanced GStreamer concepts
In this part we will cover the more advanced features of GStreamer. With the basics you learned in the
previous part you should be able to create asimpleapplication. However, GStreamer provides much
more candy than just the basics of playing back audio files. Inthis chapter, you will learn more of the
low-level features and internals of GStreamer.

Some parts of this part will serve mostly as an explanation ofhow GStreamer works internally; they are
not actually needed for actual application development. This includes chapter such as the ones covering
scheduling, autoplugging and synchronization. Other chapters, however, discuss more advanced ways of
pipeline-application interaction, and can turn out to be very useful for certain applications. This includes
the chapters on metadata, querying and events, interfaces,dynamic parameters and pipeline data
manipulation.

Chapter 11. Position tracking and seeking

So far, we’ve looked at how to create a pipeline to do media processing and how to make it run. Most
application developers will be interested in providing feedback to the user on media progress. Media
players, for example, will want to show a slider showing the progress in the song, and usually also a label
indicating stream length. Transcoding applications will want to show a progress bar on how much
percent of the task is done. GStreamer has built-in support for doing all this using a concept known as
querying. Since seeking is very similar, it will be discussed here as well. Seeking is done using the
concept ofevents.

11.1. Querying: getting the position or length of a stream

Querying is defined as requesting a specific stream-propertyrelated to progress tracking. This includes
getting the length of a stream (if available) or getting the current position. Those stream properties can be
retrieved in various formats such as time, audio samples, video frames or bytes. The function most
commonly used for this isgst_element_query (), although some convenience wrappers are
provided as well (such asgst_element_query_position () andgst_element_query_duration
()). You can generally query the pipeline directly, and it’ll figure out the internal details for you, like
which element to query.

Internally, queries will be sent to the sinks, and “dispatched” backwards until one element can handle it;
that result will be sent back to the function caller. Usually, that is the demuxer, although with live sources
(from a webcam), it is the source itself.

#include <gst/gst.h>

static gboolean
cb_print_position (GstElement *pipeline)
{

GstFormat fmt = GST_FORMAT_TIME;
gint64 pos, len;

if (gst_element_query_position (pipeline, &fmt, &pos)
& & gst_element_query_duration (pipeline, &fmt, &len)) {
g_print ("Time: %" GST_TIME_FORMAT " / %" GST_TIME_FORMAT "\r",
GST_TIME_ARGS (pos), GST_TIME_ARGS (len));

}

/* call me again */
return TRUE;

}

46

Chapter 11. Position tracking and seeking

gint
main (gint argc,

gchar *argv[])
{

GstElement *pipeline;

[..]

/* run pipeline */
g_timeout_add (200, (GSourceFunc) cb_print_position, pipeline);
g_main_loop_run (loop);

[..]

}

11.2. Events: seeking (and more)

Events work in a very similar way as queries. Dispatching, for example, works exactly the same for
events (and also has the same limitations), and they can similarly be sent to the toplevel pipeline and it
will figure out everything for you. Although there are more ways in which applications and elements can
interact using events, we will only focus on seeking here. This is done using the seek-event. A seek-event
contains a playback rate, a seek offset format (which is the unit of the offsets to follow, e.g. time, audio
samples, video frames or bytes), optionally a set of seeking-related flags (e.g. whether internal buffers
should be flushed), a seek method (which indicates relative to what the offset was given), and seek
offsets. The first offset (cur) is the new position to seek to,while the second offset (stop) is optional and
specifies a position where streaming is supposed to stop. Usually it is fine to just specify
GST_SEEK_TYPE_NONE and -1 as end_method and end offset. Thebehaviour of a seek is also
wrapped in thegst_element_seek ().

static void
seek_to_time (GstElement *pipeline,

gint64 time_nanoseconds)
{

if (!gst_element_seek (pipeline, 1.0, GST_FORMAT_TIME, GST_SEEK_FLAG_FLUSH,
GST_SEEK_TYPE_SET, time_nanoseconds,
GST_SEEK_TYPE_NONE, GST_CLOCK_TIME_NONE)) {

g_print ("Seek failed!\n");
}

}

Seeks should usually be done when the pipeline is in PAUSED orPLAYING state (when it is in
PLAYING state the pipeline will pause itself, issue the seek, and then set itself back to PLAYING again
itself). returns.

47

Chapter 11. Position tracking and seeking

It is important to realise that seeks will not happen instantly in the sense that they are finished when the
functiongst_element_seek () returns. Depending on the specific elements involved, the actual
seeking might be done later in another thread (the streamingthread), and it might take a short time until
buffers from the new seek position will reach downstream elements such as sinks (if the seek was
non-flushing then it might take a bit longer).

It is possible to do multiple seeks in short time-intervals,such as a direct response to slider movement.
After a seek, internally, the pipeline will be paused (if it was playing), the position will be re-set
internally, the demuxers and decoders will decode from the new position onwards and this will continue
until all sinks have data again. If it was playing originally, it will be set to playing again, too. Since the
new position is immediately available in a video output, youwill see the new frame, even if your pipeline
is not in the playing state.

48

Chapter 12. Metadata

GStreamer makes a clear distinction between two types of metadata, and has support for both types. The
first is stream tags, which describe the content of a stream ina non-technical way. Examples include the
author of a song, the title of that very same song or the album it is a part of. The other type of metadata is
stream-info, which is a somewhat technical description of the properties of a stream. This can include
video size, audio samplerate, codecs used and so on. Tags arehandled using the GStreamer tagging
system. Stream-info can be retrieved from aGstPad.

12.1. Metadata reading

Stream information can most easily be read by reading them from aGstPad. This has already been
discussed before inSection 8.3.1. Therefore, we will skip it here. Note that this requires access to all
pads of which you want stream information.

Tag reading is done through a bus in GStreamer, which has beendiscussed previously inChapter 7. You
can listen forGST_MESSAGE_TAG messages and handle them as you wish.

Note, however, that theGST_MESSAGE_TAG message may be fired multiple times in the pipeline. It is the
application’s responsibility to put all those tags together and display them to the user in a nice, coherent
way. Usually, usinggst_tag_list_merge () is a good enough way of doing this; make sure to empty
the cache when loading a new song, or after every few minutes when listening to internet radio. Also,
make sure you useGST_TAG_MERGE_PREPEND as merging mode, so that a new title (which came in
later) has a preference over the old one for display.

12.2. Tag writing

Tag writing is done using theGstTagSetter interface. All that’s required is a tag-set-supporting
element in your pipeline. In order to see if any of the elements in your pipeline supports tag writing, you
can use the functiongst_bin_iterate_all_by_interface (pipeline,

GST_TYPE_TAG_SETTER). On the resulting element, usually an encoder or muxer, you can use
gst_tag_setter_merge () (with a taglist) orgst_tag_setter_add () (with individual tags) to
set tags on it.

A nice extra feature in GStreamer tag support is that tags arepreserved in pipelines. This means that if
you transcode one file containing tags into another media type, and that new media type supports tags
too, then the tags will be handled as part of the data stream and be merged into the newly written media
file, too.

49

Chapter 13. Interfaces

In Section 5.3, you have learned how to useGObject properties as a simple way to do interaction
between applications and elements. This method suffices forthe simple’n’straight settings, but fails for
anything more complicated than a getter and setter. For the more complicated use cases, GStreamer uses
interfaces based on the GlibGInterface type.

Most of the interfaces handled here will not contain any example code. See the API references for
details. Here, we will just describe the scope and purpose ofeach interface.

13.1. The URI interface

In all examples so far, we have only supported local files through the “filesrc” element. GStreamer,
obviously, supports many more location sources. However, we don’t want applications to need to know
any particular element implementation details, such as element names for particular network source types
and so on. Therefore, there is a URI interface, which can be used to get the source element that supports a
particular URI type. There is no strict rule for URI naming, but in general we follow naming conventions
that others use, too. For example, assuming you have the correct plugins installed, GStreamer supports
“file:///<path>/<file>”, “http://<host>/<path>/<file>”,“mms://<host>/<path>/<file>”, and so on.

In order to get the source or sink element supporting a particular URI, use
gst_element_make_from_uri (), with the URI type being eitherGST_URI_SRC for a source
element, orGST_URI_SINK for a sink element.

13.2. The Mixer interface

The mixer interface provides a uniform way to control the volume on a hardware (or software) mixer.
The interface is primarily intended to be implemented by elements for audio inputs and outputs that talk
directly to the hardware (e.g. OSS or ALSA plugins).

Using this interface, it is possible to control a list of tracks (such as Line-in, Microphone, etc.) from a
mixer element. They can be muted, their volume can be changedand, for input tracks, their record flag
can be set as well.

Example plugins implementing this interface include the OSS elements (osssrc, osssink, ossmixer) and
the ALSA plugins (alsasrc, alsasink and alsamixer).

50

Chapter 13. Interfaces

13.3. The Tuner interface

The tuner interface is a uniform way to control inputs and outputs on a multi-input selection device. This
is primarily used for input selection on elements for TV- andcapture-cards.

Using this interface, it is possible to select one track froma list of tracks supported by that tuner-element.
The tuner will than select that track for media-processing internally. This can, for example, be used to
switch inputs on a TV-card (e.g. from Composite to S-video).

This interface is currently only implemented by the Video4linux and Video4linux2 elements.

13.4. The Color Balance interface

The colorbalance interface is a way to control video-related properties on an element, such as brightness,
contrast and so on. It’s sole reason for existance is that, asfar as its authors know, there’s no way to
dynamically register properties usingGObject.

The colorbalance interface is implemented by several plugins, including xvimagesink and the
Video4linux and Video4linux2 elements.

13.5. The Property Probe interface

The property probe is a way to autodetect allowed values for aGObject property. It’s primary use (and
the only thing that we currently use it for) is to autodetect devices in several elements. For example, the
OSS elements use this interface to detect all OSS devices on asystem. Applications can then “probe”
this property and get a list of detected devices. Given the overlap between HAL and the practical
implementations of this interface, this might in time be deprecated in favour of HAL.

This interface is currently implemented by many elements, including the ALSA, OSS, Video4linux and
Video4linux2 elements.

13.6. The X Overlay interface

The X Overlay interface was created to solve the problem of embedding video streams in an application
window. The application provides an X-window to the elementimplementing this interface to draw on,
and the element will then use this X-window to draw on rather than creating a new toplevel window. This
is useful to embed video in video players.

51

Chapter 13. Interfaces

This interface is implemented by, amongst others, the Video4linux and Video4linux2 elements and by
ximagesink, xvimagesink and sdlvideosink.

52

Chapter 14. Clocks in GStreamer

To maintain sync in pipeline playback (which is the only casewhere this really matters), GStreamer uses
clocks. Clocks are exposed by some elements, whereas other elements are merely clock slaves. The
primary task of a clock is to represent the time progress according to the element exposing the clock,
based on its own playback rate. If no clock provider is available in a pipeline, the system clock is used
instead.

14.1. Clock providers

Clock providers exist because they play back media at some rate, and this rate is not necessarily the same
as the system clock rate. For example, a soundcard may playback at 44,1 kHz, but that doesn’t mean that
afterexactly1 secondaccording to the system clock, the soundcard has played back 44.100 samples.
This is only true by approximation. Therefore, generally, pipelines with an audio output use the
audiosink as clock provider. This ensures that one second ofvideo will be played back at the same rate as
that the soundcard plays back 1 second of audio.

Whenever some part of the pipeline requires to know the current clock time, it will be requested from the
clock throughgst_clock_get_time (). The clock-time does not need to start at 0. The pipeline,
which contains the global clock that all elements in the pipeline will use, in addition has a “base time”,
which is the clock time at the the point where media time is starting from zero. This timestamp is
subctracted from the clock time, and that value is returned by _get_time ().

The clock provider is responsible for making sure that the clock time always represents the current media
time as closely as possible; it has to take care of things suchas playback latencies, buffering in
audio-kernel modules, and so on, since all those could affect a/v sync and thus decrease the user
experience.

14.2. Clock slaves

Clock slaves get assigned a clock by their containing pipeline. Their task is to make sure that media
playback follows the time progress as represented by this clock as closely as possible. For most
elements, that will simply mean to wait until a certain time is reached before playing back their current
sample; this can be done with the functiongst_clock_id_wait (). Some elements may need to
support dropping samples too, however.

For more information on how to write elements that conform tothis required behaviour, see the Plugin
Writer’s Guide.

53

Chapter 15. Dynamic Controllable Parameters

15.1. Getting Started

The controller subsystem offers a lightweight way to adjustgobject properties over stream-time. It works
by using time-stamped value pairs that are queued for element-properties. At run-time the elements
continously pull values changes for the current stream-time.

This subsystem is contained within thegstcontroller library. You need to include the header in your
application’s source file:

...
#include <gst/gst.h>
#include <gst/controller/gstcontroller.h>
...

Your application should link to the shared librarygstreamer-controller.

Thegstreamer-controller library needs to be initialized when your application is run. This can be
done after the the GStreamer library has been initialized.

...
gst_init (&argc, &argv);
gst_controller_init (&argc, &argv);
...

15.2. Setting up parameter control

The first step is to select the parameters that should be controlled. This returns a controller object that is
needed to further adjust the behaviour.

controller = g_object_control_properties(object, "prop1", "prop2",...);

Next we can select an interpolation mode. This mode controlshow inbetween values are determined. The
controller subsystem can e.g. fill gaps by smoothing parameter changes. Each controllable GObject
property can be interpolated differently.

gst_controller_set_interpolation_mode(controller,"prop1",mode);

54

Chapter 15. Dynamic Controllable Parameters

Finally one needs to set control points. These are time-stamped GValues. The values become active when
the timestamp is reached. They still stay in the list. If e.g.the pipeline runs a loop (using a segmented
seek), the control-curve gets repeated as well.

gst_controller_set (controller, "prop1" ,0 * GST_SECOND, value1);
gst_controller_set (controller, "prop1" ,1 * GST_SECOND, value2);

The controller subsystem has a builtin live-mode. Even though a parameter has timestamped
control-values assigned one can change the GObject property throughg_object_set(). This is highly
useful when binding the GObject properties to GUI widgets. When the user adjusts the value with the
widget, one can set the GOBject property and this remains active until the next timestamped value
overrides. This also works with smoothed parameters.

55

Chapter 16. Threads

GStreamer is inherently multi-threaded, and is fully thread-safe. Most threading internals are hidden
from the application, which should make application development easier. However, in some cases,
applications may want to have influence on some parts of those. GStreamer allows applications to force
the use of multiple threads over some parts of a pipeline.

16.1. When would you want to force a thread?

There are several reasons to force the use of threads. However, for performance reasons, you never want
to use one thread for every element out there, since that willcreate some overhead. Let’s now list some
situations where threads can be particularly useful:

• Data buffering, for example when dealing with network streams or when recording data from a live
stream such as a video or audio card. Short hickups elsewherein the pipeline will not cause data loss.
SeeFigure 16-1for a visualization of this idea.

• Synchronizing output devices, e.g. when playing a stream containing both video and audio data. By
using threads for both outputs, they will run independentlyand their synchronization will be better.

Figure 16-1. a two-threaded decoder with a queue

sink src sink

parse decoder

thread

disk_source
queue

src

Above, we’ve mentioned the “queue” element several times now. A queue is the thread boundary
element through which you can force the use of threads. It does so by using a classic provider/receiver
model as learned in threading classes at universities all around the world. By doing this, it acts both as a
means to make data throughput between threads threadsafe, and it can also act as a buffer. Queues have
severalGObject properties to be configured for specific uses. For example, you can set lower and upper
tresholds for the element. If there’s less data than the lower treshold (default: disabled), it will block
output. If there’s more data than the upper treshold, it willblock input or (if configured to do so) drop
data.

56

Chapter 16. Threads

To use a queues (and therefore force the use of two distinct threads in the pipeline), one can simply
create a “queue” element and put this in as part of the pipeline. GStreamer will take care of all threading
details internally.

16.2. Scheduling in GStreamer

Scheduling of pipelines in GStreamer is done by using a thread for each “group”, where a group is a set
of elements separated by “queue” elements. Within such a group, scheduling is either push-based or
pull-based, depending on which mode is supported by the particular element. If elements support random
access to data, such as file sources, then elements downstream in the pipeline become the entry point of
this group (i.e. the element controlling the scheduling of other elements). The entry point pulls data from
upstream and pushes data downstream, thereby calling data handling functions on either type of element.

In practice, most elements in GStreamer, such as decoders, encoders, etc. only support push-based
scheduling, which means that in practice, GStreamer uses a push-based scheduling model.

57

Chapter 17. Autoplugging

In Chapter 10, you’ve learned to build a simple media player for Ogg/Vorbis files. By using alternative
elements, you are able to build media players for other mediatypes, such as Ogg/Speex, MP3 or even
video formats. However, you would rather want to build an application that can automatically detect the
media type of a stream and automatically generate the best possible pipeline by looking at all available
elements in a system. This process is called autoplugging, and GStreamer contains high-quality
autopluggers. If you’re looking for an autoplugger, don’t read any further and go toChapter 19. This
chapter will explain theconceptof autoplugging and typefinding. It will explain what systems
GStreamer includes to dynamically detect the type of a mediastream, and how to generate a pipeline of
decoder elements to playback this media. The same principles can also be used for transcoding. Because
of the full dynamicity of this concept, GStreamer can be automatically extended to support new media
types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynamic and extendible way of identifying media
streams. After that, we will introduce the concept of typefinding to find the type of a media stream.
Lastly, we will explain how autoplugging and the GStreamer registry can be used to setup a pipeline that
will convert media from one mimetype to another, for examplefor media decoding.

17.1. MIME-types as a way to identity streams

We have previously introduced the concept of capabilities as a way for elements (or, rather, pads) to
agree on a media type when streaming data from one element to the next (seeSection 8.2). We have
explained that a capability is a combination of a mimetype and a set of properties. For most container
formats (those are the files that you will find on your hard disk; Ogg, for example, is a container format),
no properties are needed to describe the stream. Only a MIME-type is needed. A full list of MIME-types
and accompanying properties can be found in the Plugin Writer’s Guide
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-types-definitions.html).

An element must associate a MIME-type to its source and sink pads when it is loaded into the system.
GStreamer knows about the different elements and what type of data they expect and emit through the
GStreamer registry. This allows for very dynamic and extensible element creation as we will see.

In Chapter 10, we’ve learned to build a music player for Ogg/Vorbis files. Let’s look at the MIME-types
associated with each pad in this pipeline.Figure 17-1shows what MIME-type belongs to each pad in this
pipeline.

58

Chapter 17. Autoplugging

Figure 17-1. The Hello world pipeline with MIME types

pipeline

src sink src sink src

file source ogg demuxer vorbis decoder

? audio/x−raw−floatapplication/ogg

audio/x−raw−floataudio/x−vorbis

audio/x−vorbis

Now that we have an idea how GStreamer identifies known media streams, we can look at methods
GStreamer uses to setup pipelines for media handling and formedia type detection.

17.2. Media stream type detection

Usually, when loading a media stream, the type of the stream is not known. This means that before we
can choose a pipeline to decode the stream, we first need to detect the stream type. GStreamer uses the
concept of typefinding for this. Typefinding is a normal part of a pipeline, it will read data for as long as
the type of a stream is unknown. During this period, it will provide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the stream, the typefind element will emit a signal and
act as a passthrough module from that point on. If no type was found, it will emit an error and further
media processing will stop.

Once the typefind element has found a type, the application can use this to plug together a pipeline to
decode the media stream. This will be discussed in the next section.

Plugins in GStreamer can, as mentioned before, implement typefinder functionality. A plugin
implementing this functionality will submit a mimetype, optionally a set of file extensions commonly
used for this media type, and a typefind function. Once this typefind function inside the plugin is called,
the plugin will see if the data in this media stream matches a specific pattern that marks the media type
identified by that mimetype. If it does, it will notify the typefind element of this fact, telling which
mediatype was recognized and how certain we are that this stream is indeed that mediatype. Once this

59

Chapter 17. Autoplugging

run has been completed for all plugins implementing a typefind functionality, the typefind element will
tell the application what kind of media stream it thinks to have recognized.

The following code should explain how to use the typefind element. It will print the detected media type,
or tell that the media type was not found. The next section will introduce more useful behaviours, such as
plugging together a decoding pipeline.

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

static gboolean
idle_exit_loop (gpointer data)
{

g_main_loop_quit ((GMainLoop *) data);

/* once */
return FALSE;

}

static void
cb_typefound (GstElement *typefind,

guint probability,
GstCaps *caps,
gpointer data)

{
GMainLoop *loop = data;
gchar *type;

type = gst_caps_to_string (caps);
g_print ("Media type %s found, probability %d%%\n", type, probability);
g_free (type);

/* since we connect to a signal in the pipeline thread context, we need

* to set an idle handler to exit the main loop in the mainloop context.

* Normally, your app should not need to worry about such things. */
g_idle_add (idle_exit_loop, loop);

}

gint
main (gint argc,

gchar *argv[])
{

GMainLoop *loop;
GstElement *pipeline, *filesrc, *typefind;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* check args */
if (argc != 2) {

60

Chapter 17. Autoplugging

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

}

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipe");
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (pipeline)),

my_bus_callback, NULL);

/* create file source and typefind element */
filesrc = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
typefind = gst_element_factory_make ("typefind", "typefinder");
g_signal_connect (typefind, "have-type", G_CALLBACK (cb_typefound), loop);

/* setup */
gst_bin_add_many (GST_BIN (pipeline), filesrc, typefind, NULL);
gst_element_link (filesrc, typefind);
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
g_main_loop_run (loop);

/* unset */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Once a media type has been detected, you can plug an element (e.g. a demuxer or decoder) to the source
pad of the typefind element, and decoding of the media stream will start right after.

17.3. Plugging together dynamic pipelines

In this chapter we will see how you can create a dynamic pipeline. A dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We willcreate a partial pipeline first and add more
elements while the pipeline is playing. The basis of this player will be the application that we wrote in
the previous section (Section 17.2) to identify unknown media streams.

Once the type of the media has been found, we will find elementsin the registry that can decode this
streamtype. For this, we will get all element factories (which we’ve seen before inSection 5.2) and find
the ones with the given MIME-type and capabilities on their sinkpad. Note that we will only use parsers,
demuxers and decoders. We will not use factories for any other element types, or we might get into a
loop of encoders and decoders. For this, we will want to builda list of “allowed” factories right after
initializing GStreamer.

static GList *factories;

61

Chapter 17. Autoplugging

/*
* This function is called by the registry loader. Its return value

* (TRUE or FALSE) decides whether the given feature will be included

* in the list that we’re generating further down.

*/

static gboolean
cb_feature_filter (GstPluginFeature *feature,

gpointer data)
{

const gchar *klass;
guint rank;

/* we only care about element factories */
if (!GST_IS_ELEMENT_FACTORY (feature))

return FALSE;

/* only parsers, demuxers and decoders */
klass = gst_element_factory_get_klass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Demux") == NULL &&

g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)

return FALSE;

/* only select elements with autoplugging rank */
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_MARGINAL)

return FALSE;

return TRUE;
}

/*
* This function is called to sort features by rank.

*/

static gint
cb_compare_ranks (GstPluginFeature *f1,

GstPluginFeature *f2)
{

return gst_plugin_feature_get_rank (f2) - gst_plugin_feature_get_rank (f1);
}

static void
init_factories (void)
{

/* first filter out the interesting element factories */
factories = gst_registry_pool_feature_filter (

(GstPluginFeatureFilter) cb_feature_filter, FALSE, NULL);

/* sort them according to their ranks */
factories = g_list_sort (factories, (GCompareFunc) cb_compare_ranks);

}

62

Chapter 17. Autoplugging

From this list of element factories, we will select the one that most likely will help us decoding a media
stream to a given output type. For each newly created element, we will again try to autoplug new
elements to its source pad(s). Also, if the element has dynamic pads (which we’ve seen before in
Section 8.1.1), we will listen for newly created source pads and handle those, too. The following code
replaces thecb_type_found from the previous section with a function to initiate autoplugging, which
will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);

static GstElement *audiosink;

static void
cb_newpad (GstElement *element,

GstPad *pad,
gpointer data)

{
GstCaps *caps;

caps = gst_pad_get_caps (pad);
try_to_plug (pad, caps);
gst_caps_unref (caps);

}

static void
close_link (GstPad *srcpad,

GstElement *sinkelement,
const gchar *padname,
const GList *templlist)

{
GstPad *pad;
gboolean has_dynamic_pads = FALSE;

g_print ("Plugging pad %s:%s to newly created %s:%s\n",
gst_object_get_name (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst_pad_get_name (srcpad),
gst_object_get_name (GST_OBJECT (sinkelement)), padname);

/* add the element to the pipeline and set correct state */
if (sinkelement != audiosink) {

gst_bin_add (GST_BIN (pipeline), sinkelement);
gst_element_set_state (sinkelement, GST_STATE_READY);

}
pad = gst_element_get_pad (sinkelement, padname);
gst_pad_link (srcpad, pad);
if (sinkelement != audiosink) {

gst_element_set_state (sinkelement, GST_STATE_PAUSED);
}
gst_object_unref (GST_OBJECT (pad));

/* if we have static source pads, link those. If we have dynamic

63

Chapter 17. Autoplugging

* source pads, listen for pad-added signals on the element */
for (; templlist != NULL; templlist = templlist->next) {

GstStaticPadTemplate *templ = templlist->data;

/* only sourcepads, no request pads */
if (templ->direction != GST_PAD_SRC ||

templ->presence == GST_PAD_REQUEST) {
continue;

}

switch (templ->presence) {
case GST_PAD_ALWAYS: {

GstPad *pad = gst_element_get_pad (sinkelement, templ->name_template);
GstCaps *caps = gst_pad_get_caps (pad);

/* link */
try_to_plug (pad, caps);
gst_object_unref (GST_OBJECT (pad));
gst_caps_unref (caps);
break;

}
case GST_PAD_SOMETIMES:

has_dynamic_pads = TRUE;
break;

default:
break;

}
}

/* listen for newly created pads if this element supports that */
if (has_dynamic_pads) {

g_signal_connect (sinkelement, "pad-added", G_CALLBACK (cb_newpad), NULL);
}

}

static void
try_to_plug (GstPad *pad,

const GstCaps *caps)
{

GstObject *parent = GST_OBJECT (GST_OBJECT_PARENT (pad));
const gchar *mime;
const GList *item;
GstCaps *res, *audiocaps;

/* don’t plug if we’re already plugged - FIXME: memleak for pad */
if (GST_PAD_IS_LINKED (gst_element_get_pad (audiosink, "sink"))) {

g_print ("Omitting link for pad %s:%s because we’re already linked\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));

return;
}

/* as said above, we only try to plug audio... Omit video */
mime = gst_structure_get_name (gst_caps_get_structure (caps, 0));

64

Chapter 17. Autoplugging

if (g_strrstr (mime, "video")) {
g_print ("Omitting link for pad %s:%s because mimetype %s is non-audio\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad), mime);

return;
}

/* can it link to the audiopad? */
audiocaps = gst_pad_get_caps (gst_element_get_pad (audiosink, "sink"));
res = gst_caps_intersect (caps, audiocaps);
if (res && !gst_caps_is_empty (res)) {

g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst_caps_unref (audiocaps);
gst_caps_unref (res);
return;

}
gst_caps_unref (audiocaps);
gst_caps_unref (res);

/* try to plug from our list */
for (item = factories; item != NULL; item = item->next) {

GstElementFactory *factory = GST_ELEMENT_FACTORY (item->data);
const GList *pads;

for (pads = gst_element_factory_get_static_pad_templates (factory);
pads != NULL; pads = pads->next) {

GstStaticPadTemplate *templ = pads->data;

/* find the sink template - need an always pad*/
if (templ->direction != GST_PAD_SINK ||

templ->presence != GST_PAD_ALWAYS) {
continue;

}

/* can it link? */
res = gst_caps_intersect (caps,

gst_static_caps_get (&templ->static_caps));
if (res && !gst_caps_is_empty (res)) {

GstElement *element;
gchar *name_template = g_strdup (templ->name_template);

/* close link and return */
gst_caps_unref (res);
element = gst_element_factory_create (factory, NULL);
close_link (pad, element, name_template,

gst_element_factory_get_static_pad_templates (factory));
g_free (name_template);
return;

}
gst_caps_unref (res);

/* we only check one sink template per factory, so move on to the

* next factory now */

65

Chapter 17. Autoplugging

break;
}

}

/* if we get here, no item was found */
g_print ("No compatible pad found to decode %s on %s:%s\n",

mime, GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
}

static void
cb_typefound (GstElement *typefind,

guint probability,
GstCaps *caps,
gpointer data)

{
gchar *s;
GstPad *pad;

s = gst_caps_to_string (caps);
g_print ("Detected media type %s\n", s);
g_free (s);

/* actually plug now */
pad = gst_element_get_pad (typefind, "src");
try_to_plug (pad, caps);
gst_object_unref (GST_OBJECT (pad));

}

By doing all this, we will be able to make a simple autopluggerthat can automatically setup a pipeline
for any media type. In the example below, we will do this for audio only. However, we can also do this
for video to create a player that plays both audio and video.

The example above is a good first try for an autoplugger. Next steps would be to listen for
“pad-removed” signals, so we can dynamically change the plugged pipeline if the stream changes (this
happens for DVB or Ogg radio). Also, you might want special-case code for input with known content
(such as a DVD or an audio-CD), and much, much more. Moreover,you’ll want many checks to prevent
infinite loops during autoplugging, maybe you’ll want to implement shortest-path-finding to make sure
the most optimal pipeline is chosen, and so on. Basically, the features that you implement in an
autoplugger depend on what you want to use it for. For full-blown implementations, see the “playbin”
and “decodebin” elements.

66

Chapter 18. Pipeline manipulation

This chapter will discuss how you can manipulate your pipeline in several ways from your application
on. Parts of this chapter are downright hackish, so be assured that you’ll need some programming
knowledge before you start reading this.

Topics that will be discussed here include how you can insertdata into a pipeline from your application,
how to read data from a pipeline, how to manipulate the pipeline’s speed, length, starting point and how
to listen to a pipeline’s data processing.

18.1. Data probing

Probing is best envisioned as a pad listener. Technically, aprobe is nothing more than a signal callback
that can be attached to a pad. Those signals are by default notfired at all (since that may have a negative
impact on performance), but can be enabled by attaching a probe usinggst_pad_add_data_probe ()

or one of the similar functions. Those functions attach the signal handler and enable the actual signal
emission. Similarly, one can use thegst_pad_remove_data_probe () or related functions to remove
the signal handlers again. It is also possible to only listento events or only to buffers (and ignore the
other).

Probes run in pipeline threading context, so callbacks should try to not block and generally not do any
weird stuff, since this could have a negative impact on pipeline performance or, in case of bugs, cause
deadlocks or crashes. However, most common buffer operations that elements can do in_chain ()

functions, can be done in probe callbacks as well. The example below gives a short impression on how to
use them.

#include <gst/gst.h>

static gboolean
cb_have_data (GstPad *pad,

GstBuffer *buffer,
gpointer u_data)

{
gint x, y;
guint16 *data = (guint16 *) GST_BUFFER_DATA (buffer), t;

/* invert data */
for (y = 0; y < 288; y++) {

for (x = 0; x < 384 / 2; x++) {
t = data[384 - 1 - x];
data[384 - 1 - x] = data[x];
data[x] = t;

}
data += 384;

}

67

Chapter 18. Pipeline manipulation

return TRUE;
}

gint
main (gint argc,

gchar *argv[])
{

GMainLoop *loop;
GstElement *pipeline, *src, *sink, *filter, *csp;
GstCaps *caps;
GstPad *pad;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* build */
pipeline = gst_pipeline_new ("my-pipeline");
src = gst_element_factory_make ("videotestsrc", "src");
if (src == NULL)

g_error ("Could not create ’videotestsrc’ element");

filter = gst_element_factory_make ("capsfilter", "filter");
g_assert (filer != NULL); /* should always exist */

csp = gst_element_factory_make ("ffmpegcolorspace", "csp");
if (csp == NULL)

g_error ("Could not create ’ffmpegcolorspace’ element");

sink = gst_element_factory_make ("xvimagesink", "sink");
if (sink == NULL) {

sink = gst_element_factory_make ("ximagesink", "sink");
if (sink == NULL)
g_error ("Could not create neither ’xvimagesink’ nor ’ximagesink’ element");

}

gst_bin_add_many (GST_BIN (pipeline), src, filter, csp, sink, NULL);
gst_element_link_many (src, filter, csp, sink, NULL);
filtercaps = gst_caps_new_simple ("video/x-raw-rgb",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
"bpp", G_TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
NULL);

g_object_set (G_OBJECT (filter), "caps", filtercaps, NULL);
gst_caps_unref (filtercaps);

pad = gst_element_get_pad (src, "src");
gst_pad_add_buffer_probe (pad, G_CALLBACK (cb_have_data), NULL);
gst_object_unref (pad);

68

Chapter 18. Pipeline manipulation

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);

/* wait until it’s up and running or failed */
if (gst_element_get_state (pipeline, NULL, NULL, -1) == GST_STATE_CHANGE_FAILURE) {

g_error ("Failed to go into PLAYING state");
}

g_print ("Running ...\n");
g_main_loop_run (loop);

/* exit */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (pipeline);

return 0;
}

Compare that output with the output of “gst-launch-0.10 videotestsrc ! xvimagesink”, just so you know
what you’re looking for.

18.2. Manually adding or removing data from/to a pipeline

Many people have expressed the wish to use their own sources to inject data into a pipeline. Some people
have also expressed the wish to grab the output in a pipeline and take care of the actual output inside
their application. While either of these methods are stongly discouraged, GStreamer offers hacks to do
this.However, there is no support for those methods.If it doesn’t work, you’re on your own. Also,
synchronization, thread-safety and other things that you’ve been able to take for granted so far are no
longer guanranteed if you use any of those methods. It’s always better to simply write a plugin and have
the pipeline schedule and manage it. See the Plugin Writer’sGuide for more information on this topic.
Also see the next section, which will explain how to embed plugins statically in your application.

After all those disclaimers, let’s start. There’s three possible elements that you can use for the
above-mentioned purposes. Those are called “fakesrc” (an imaginary source), “fakesink” (an imaginary
sink) and “identity” (an imaginary filter). The same method applies to each of those elements. Here, we
will discuss how to use those elements to insert (using fakesrc) or grab (using fakesink or identity) data
from a pipeline, and how to set negotiation.

Those who’re paying close attention, will notice that the purpose of identity is almost identical to that of
probes. Indeed, this is true. Probes allow for the same purpose, and a bunch more, and with less overhead
plus dynamic removing/adding of handlers, but apart from those, probes and identity have the same
purpose, just in a completely different implementation type.

69

Chapter 18. Pipeline manipulation

18.2.1. Inserting or grabbing data

The three before-mentioned elements (fakesrc, fakesink and identity) each have a “handoff” signal that
will be called in the_get ()- (fakesrc) or_chain ()-function (identity, fakesink). In the signal
handler, you can set (fakesrc) or get (identity, fakesink) data to/from the provided buffer. Note that in the
case of fakesrc, you have to set the size of the provided buffer using the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-handoffs” property for this method to work.

Note that your handoff function shouldnot block, since this will block pipeline iteration. Also, do not try
to use all sort of weird hacks in such functions to accomplishsomething that looks like synchronization
or so; it’s not the right way and will lead to issues elsewhere. If you’re doing any of this, you’re basically
misunderstanding the GStreamer design.

18.2.2. Forcing a format

Sometimes, when using fakesrc as a source in your pipeline, you’ll want to set a specific format, for
example a video size and format or an audio bitsize and numberof channels. You can do this by forcing a
specificGstCaps on the pipeline, which is possible by usingfiltered caps. You can set a filtered caps on
a link by using the “capsfilter” element in between the two elements, and specifying aGstCaps as
“caps” property on this element. It will then only allow types matching that specified capability set for
negotiation.

18.2.3. Example application

This example application will generate black/white (it switches every second) video to an X-window
output by using fakesrc as a source and using filtered caps to force a format. Since the depth of the image
depends on your X-server settings, we use a colorspace conversion element to make sure that the output
to your X server will have the correct bitdepth. You can also set timestamps on the provided buffers to
override the fixed framerate.

#include <string.h> /* for memset () */
#include <gst/gst.h>

static void
cb_handoff (GstElement *fakesrc,

GstBuffer *buffer,
GstPad *pad,
gpointer user_data)

{
static gboolean white = FALSE;

/* this makes the image black/white */
memset (GST_BUFFER_DATA (buffer), white ? 0xff : 0x0,
GST_BUFFER_SIZE (buffer));

white = !white;

70

Chapter 18. Pipeline manipulation

}

gint
main (gint argc,

gchar *argv[])
{

GstElement *pipeline, *fakesrc, *flt, *conv, *videosink;
GMainLoop *loop;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* setup pipeline */
pipeline = gst_pipeline_new ("pipeline");
fakesrc = gst_element_factory_make ("fakesrc", "source");
flt = gst_element_factory_make ("capsfilter", "flt");
conv = gst_element_factory_make ("ffmpegcolorspace", "conv");
videosink = gst_element_factory_make ("xvimagesink", "videosink");

/* setup */
g_object_set (G_OBJECT (flt), "caps",

gst_caps_new_simple ("video/x-raw-rgb",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 1, 1,
"bpp", G_TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
NULL), NULL);

gst_bin_add_many (GST_BIN (pipeline), fakesrc, flt, conv, videosink, NULL);
gst_element_link_many (fakesrc, flt, conv, videosink, NULL);

/* setup fake source */
g_object_set (G_OBJECT (fakesrc),
"signal-handoffs", TRUE,
"sizemax", 384 * 288 * 2,
"sizetype", 2, NULL);
g_signal_connect (fakesrc, "handoff", G_CALLBACK (cb_handoff), NULL);

/* play */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

71

Chapter 18. Pipeline manipulation

18.3. Embedding static elements in your application

The Plugin Writer’s Guide
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html) describes in great detail
how to write elements for the GStreamer framework. In this section, we will solely discuss how to embed
such elements statically in your application. This can be useful for application-specific elements that
have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that’s defined usingGST_PLUGIN_DEFINE (). This
structure is loaded when the plugin is loaded by the GStreamer core. The structure contains an
initialization function (usually calledplugin_init) that will be called right after that. It’s purpose is to
register the elements provided by the plugin with the GStreamer framework. If you want to embed
elements directly in your application, the only thing you need to do is to manually run this structure
using_gst_plugin_register_static (). The initialization will then be called, and the elements
will from then on be available like any other element, without them having to be dynamically loadable
libraries. In the example below, you would be able to callgst_element_factory_make

("my-element-name", "some-name") to create an instance of the element.

/*
* Here, you would write the actual plugin code.

*/

[..]

static gboolean
register_elements (GstPlugin *plugin)
{

return gst_element_register (plugin, "my-element-name",
GST_RANK_NONE, MY_PLUGIN_TYPE);

}

static GstPluginDesc plugin_desc = {
GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"my-private-plugins",
"Private elements of my application",
register_elements,
NULL,
"0.0.1",
"LGPL",
"my-application",
"http://www.my-application.net/",
GST_PADDING_INIT

};

/*
* Call this function right after calling gst_init ().

*/

void

72

Chapter 18. Pipeline manipulation

my_elements_init (void)
{

_gst_plugin_register_static (&plugin_desc);
}

73

IV. Higher-level interfaces for
GStreamer applications

In the previous two parts, you have learned many of the internals and their corresponding low-level
interfaces into GStreamer application programming. Many people will, however, not need so much
control (and as much code), but will prefer to use a standard playback interface that does most of the
difficult internals for them. In this chapter, we will introduce you into the concept of autopluggers,
playback managing elements, XML-based pipelines and othersuch things. Those higher-level interfaces
are intended to simplify GStreamer-based application programming. They do, however, also reduce the
flexibility. It is up to the application developer to choose which interface he will want to use.

Chapter 19. Components

GStreamer includes several higher-level components to simplify your applications life. All of the
components discussed here (for now) are targetted at media playback. The idea of each of these
components is to integrate as closely as possible with a GStreamer pipeline, but to hide the complexity of
media type detection and several other rather complex topics that have been discussed in
Part III in GStreamer Application Development Manual (0.10.4).

We currently recommend people to use either playbin (seeSection 19.1) or decodebin (seeSection 19.2),
depending on their needs. Playbin is the recommended solution for everything related to simple playback
of media that should just work. Decodebin is a more flexible autoplugger that could be used to add more
advanced featuers, such as playlist support, crossfading of audio tracks and so on. Its programming
interface is more low-level than that of playbin, though.

19.1. Playbin

Playbin is an element that can be created using the standard GStreamer API (e.g.
gst_element_factory_make ()). The factory is conveniently called “playbin”. By being a
GstPipeline (and thus aGstElement), playbin automatically supports all of the features of this class,
including error handling, tag support, state handling, getting stream positions, seeking, and so on.

Setting up a playbin pipeline is as simple as creating an instance of the playbin element, setting a file
location (this has to be a valid URI, so “<protocol>://<location>”, e.g. file:///tmp/my.ogg or
http://www.example.org/stream.ogg) using the “uri” property on playbin, and then setting the element to
theGST_STATE_PLAYING state. Internally, playbin will set up a pipeline to playback the media location.

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

gint
main (gint argc,

gchar *argv[])
{

GMainLoop *loop;
GstElement *play;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* make sure we have a URI */
if (argc != 2) {

g_print ("Usage: %s <URI>\n", argv[0]);
return -1;

75

Chapter 19. Components

}

/* set up */
play = gst_element_factory_make ("playbin", "play");
g_object_set (G_OBJECT (play), "uri", argv[1], NULL);
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (play)),

my_bus_callback, loop);
gst_element_set_state (play, GST_STATE_PLAYING);

/* now run */
g_main_loop_run (loop);

/* also clean up */
gst_element_set_state (play, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (play));

return 0;
}

Playbin has several features that have been discussed previously:

• Settable video and audio output (using the “video-sink” and“audio-sink” properties).

• Mostly controllable and trackable as aGstElement, including error handling, eos handling, tag
handling, state handling (through theGstBus), media position handling and seeking.

• Buffers network-sources, with buffer fullness notifications being passed through theGstBus.

• Supports visualizations for audio-only media.

• Supports subtitles, both in the media as well as from separate files. For separate subtitle files, use the
“suburi” property.

• Supports stream selection and disabling. If your media has multiple audio or subtitle tracks, you can
dynamically choose which one to play back, or decide to turn it off alltogther (which is especially
useful to turn off subtitles). For each of those, use the “current-text” and other related properties.

For convenience, it is possible to test “playbin” on the commandline, using the command
“gst-launch-0.10 playbin uri=file:///path/to/file”.

19.2. Decodebin

Decodebin is the actual autoplugger backend of playbin, which was discussed in the previous section.
Decodebin will, in short, accept input from a source that is linked to its sinkpad and will try to detect the
media type contained in the stream, and set up decoder routines for each of those. It will automatically
select decoders. For each decoded stream, it will emit the “new-decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknown streams (which might be the whole stream),
it will emit the “unknown-type” signal. The application is then responsible for reporting the error to the
user.

76

Chapter 19. Components

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

GstElement *pipeline, *audio;

static void
cb_newpad (GstElement *decodebin,

GstPad *pad,
gboolean last,
gpointer data)

{
GstCaps *caps;
GstStructure *str;
GstPad *audiopad;

/* only link once */
audiopad = gst_element_get_pad (audio, "sink");
if (GST_PAD_IS_LINKED (audiopad)) {

g_object_unref (audiopad);
return;

}

/* check media type */
caps = gst_pad_get_caps (pad);
str = gst_caps_get_structure (caps, 0);
if (!g_strrstr (gst_structure_get_name (str), "audio")) {

gst_caps_unref (caps);
gst_object_unref (audiopad);
return;

}
gst_caps_unref (caps);

/* link’n’play */
gst_pad_link (pad, audiopad);

}

gint
main (gint argc,

gchar *argv[])
{

GMainLoop *loop;
GstElement *src, *dec, *conv, *sink;
GstPad *audiopad;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* make sure we have input */
if (argc != 2) {

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

77

Chapter 19. Components

}

/* setup */
pipeline = gst_pipeline_new ("pipeline");
gst_bus_add_watch (gst_pipeline_get_bus (GST_PIPELINE (pipeline)),

my_bus_callback, loop);
src = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (src), "location", argv[1], NULL);
dec = gst_element_factory_make ("decodebin", "decoder");
g_signal_connect (dec, "new-decoded-pad", G_CALLBACK (cb_newpad), NULL);
gst_bin_add_many (GST_BIN (pipeline), src, dec, NULL);
gst_element_link (src, dec);

/* create audio output */
audio = gst_bin_new ("audiobin");
conv = gst_element_factory_make ("audioconvert", "aconv");
audiopad = gst_element_get_pad (conv, "sink");
sink = gst_element_factory_make ("alsasink", "sink");
gst_bin_add_many (GST_BIN (audio), conv, sink, NULL);
gst_element_link (conv, sink);
gst_element_add_pad (audio,

gst_ghost_pad_new ("sink", audiopad));
gst_object_unref (audiopad);
gst_bin_add (GST_BIN (pipeline), audio);

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);

/* cleanup */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Decodebin, similar to playbin, supports the following features:

• Can decode an unlimited number of contained streams to decoded output pads.

• Is handled as aGstElement in all ways, including tag or error forwarding and state handling.

Although decodebin is a good autoplugger, there’s a whole lot of things that it does not do and is not
intended to do:

• Taking care of input streams with a known media type (e.g. a DVD, an audio-CD or such).

• Selection of streams (e.g. which audio track to play in case of multi-language media streams).

• Overlaying subtitles over a decoded video stream.

78

Chapter 19. Components

Decodebin can be easily tested on the commandline, e.g. by using the commandgst-launch-0.8 filesrc
location=file.ogg ! decodebin ! audioconvert ! alsasink.

19.3. GstEditor

GstEditor is a set of widgets to display a graphical representation of a pipeline.

79

Chapter 20. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitions. XML is also used internally to manage
the plugin registry. The plugin registry is a file that contains the definition of all the plugins GStreamer
knows about to have quick access to the specifics of the plugins.

We will show you how you can save a pipeline to XML and how you can reload that XML file again for
later use.

20.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gst_xml_write_file (). The following code
constructs an MP3 player pipeline with two threads and then writes out the XML both to stdout and to a
file. Use this program with one argument: the MP3 file on disk.

#include <stdlib.h>
#include <gst/gst.h>

gboolean playing;

int
main (int argc, char *argv[])
{

GstElement *filesrc, *osssink, *queue, *queue2, *decode;
GstElement *bin;
GstElement *thread, *thread2;

gst_init (&argc,&argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new thread to hold the elements */
thread = gst_element_factory_make ("thread", "thread");
g_assert (thread != NULL);
thread2 = gst_element_factory_make ("thread", "thread2");
g_assert (thread2 != NULL);

/* create a new bin to hold the elements */
bin = gst_bin_new ("bin");
g_assert (bin != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");

80

Chapter 20. XML in GStreamer

g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

queue = gst_element_factory_make ("queue", "queue");
queue2 = gst_element_factory_make ("queue", "queue2");

/* and an audio sink */
osssink = gst_element_factory_make ("osssink", "play_audio");
g_assert (osssink != NULL);

decode = gst_element_factory_make ("mad", "decode");
g_assert (decode != NULL);

/* add objects to the main bin */
gst_bin_add_many (GST_BIN (bin), filesrc, queue, NULL);

gst_bin_add_many (GST_BIN (thread), decode, queue2, NULL);

gst_bin_add (GST_BIN (thread2), osssink);

gst_element_link_many (filesrc, queue, decode, queue2, osssink, NULL);

gst_bin_add_many (GST_BIN (bin), thread, thread2, NULL);

/* write the bin to stdout */
gst_xml_write_file (GST_ELEMENT (bin), stdout);

/* write the bin to a file */
gst_xml_write_file (GST_ELEMENT (bin), fopen ("xmlTest.gst", "w"));

exit (0);
}

The most important line is:

gst_xml_write_file (GST_ELEMENT (bin), stdout);

gst_xml_write_file () will turn the given element into an xmlDocPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the second argument.

The complete element hierarchy will be saved along with the inter element pad links and the element
parameters. Future GStreamer versions will also allow you to store the signals in the XML file.

81

Chapter 20. XML in GStreamer

20.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML object. A saved XML file can then be
loaded with the gst_xml_parse_file (xml, filename, rootelement) method. The root element can
optionally left NULL. The following code example loads the previously created XML file and runs it.

#include <stdlib.h>
#include <gst/gst.h>

int
main(int argc, char *argv[])
{

GstXML *xml;
GstElement *bin;
gboolean ret;

gst_init (&argc, &argv);

xml = gst_xml_new ();

ret = gst_xml_parse_file(xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

bin = gst_xml_get_element (xml, "bin");
g_assert (bin != NULL);

gst_element_set_state (bin, GST_STATE_PLAYING);

while (gst_bin_iterate(GST_BIN(bin)));

gst_element_set_state (bin, GST_STATE_NULL);

exit (0);
}

gst_xml_get_element (xml, "name") can be used to get a specific element from the XML file.

gst_xml_get_topelements (xml) can be used to get a list of all toplevel elements in the XML file.

In addition to loading a file, you can also load a from a xmlDocPtr and an in memory buffer using
gst_xml_parse_doc and gst_xml_parse_memory respectively. Both of these methods return a gboolean
indicating success or failure of the requested action.

82

Chapter 20. XML in GStreamer

20.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML created with gst_xml_write. This feature can be
used by an application to add more information to the save plugins. The editor will for example insert the
position of the elements on the screen using the custom XML tags.

It is strongly suggested to save and load the custom XML tags using a namespace. This will solve the
problem of having your XML tags interfere with the core XML tags.

To insert a hook into the element saving procedure you can link a signal to the GstElement using the
following piece of code:

xmlNsPtr ns;

...
ns = xmlNewNs (NULL, "http://gstreamer.net/gst-test/1.0/", "test");

...
thread = gst_element_factory_make ("thread", "thread");
g_signal_connect (G_OBJECT (thread), "object_saved",

G_CALLBACK (object_saved), g_strdup ("decoder thread"));
...

When the thread is saved, the object_save method will be called. Our example will insert a comment tag:

static void
object_saved (GstObject *object, xmlNodePtr parent, gpointer data)
{

xmlNodePtr child;

child = xmlNewChild (parent, ns, "comment", NULL);
xmlNewChild (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will get anXML file with the custom tags in it.
Here’s an excerpt:

...
<gst:element>

<gst:name>thread</gst:name>
<gst:type>thread</gst:type>
<gst:version>0.1.0</gst:version>

...
</gst:children>
<test:comment>

<test:text>decoder thread</test:text>
</test:comment>

</gst:element>

83

Chapter 20. XML in GStreamer

...

To retrieve the custom XML again, you need to attach a signal to the GstXML object used to load the
XML data. You can then parse your custom XML from the XML tree whenever an object is loaded.

We can extend our previous example with the following piece of code.

xml = gst_xml_new ();

g_signal_connect (G_OBJECT (xml), "object_loaded",
G_CALLBACK (xml_loaded), xml);

ret = gst_xml_parse_file (xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded function will be called. This function looks like:

static void
xml_loaded (GstXML *xml, GstObject *object, xmlNodePtr self, gpointer data)
{

xmlNodePtr children = self->xmlChildrenNode;

while (children) {
if (!strcmp (children->name, "comment")) {
xmlNodePtr nodes = children->xmlChildrenNode;

while (nodes) {
if (!strcmp (nodes->name, "text")) {

gchar *name = g_strdup (xmlNodeGetContent (nodes));
g_print ("object %s loaded with comment ’%s’\n",

gst_object_get_name (object), name);
}
nodes = nodes->next;

}
}
children = children->next;

}
}

As you can see, you’ll get a handle to the GstXML object, the newly loaded GstObject and the
xmlNodePtr that was used to create this object. In the above example we look for our special tag inside
the XML tree that was used to load the object and we print our comment to the console.

84

V. Appendices
By now, you’ve learned all about the internals of GStreamer and application programming using the
GStreamer framework. This part will go into some random bitsthat are useful to know if you’re going to
use GStreamer for serious application programming. It willtouch upon things related to integration with
popular desktop environments that we run on (GNOME, KDE, OS X, Windows), it will shortly explain
how applications included with GStreamer can help making your life easier, and some information on
debugging.

In addition, we also provide a porting guide which will explain easily how to port GStreamer-0.8
applications to GStreamer-0.10.

Chapter 21. Things to check when writing an
application

This chapter contains a fairly random selection of things that can be useful to keep in mind when writing
GStreamer-based applications. It’s up to you how much you’re going to use the information provided
here. We will shortly discuss how to debug pipeline problemsusing GStreamer applications. Also, we
will touch upon how to acquire knowledge about plugins and elements and how to test simple pipelines
before building applications around them.

21.1. Good programming habits
• Always add aGstBus handler to your pipeline. Always report errors in your application, and try to do

something with warnings and information messages, too.

• Always check return values of GStreamer functions. Especially, check return values of
gst_element_link () andgst_element_set_state ().

• Dereference return values of all functions returning a non-base type, such asgst_element_get_pad
(). Also, always free non-const string returns, such asgst_object_get_name ().

• Always use your pipeline object to keep track of the current state of your pipeline. Don’t keep private
variables in your application. Also, don’t update your userinterface if a user presses the “play” button.
Instead, listen for the “state-changed” message on theGstBus and only update the user interface
whenever this message is received.

• Report all bugs that you find in GStreamer bugzilla at http://bugzilla.gnome.org/
(http://bugzilla.gnome.org).

21.2. Debugging

Applications can make use of the extensive GStreamer debugging system to debug pipeline problems.
Elements will write output to this system to log what they’redoing. It’s not used for error reporting, but it
is very useful for tracking what an element is doing exactly,which can come in handy when debugging
application issues (such as failing seeks, out-of-sync media, etc.).

Most GStreamer-based applications accept the commandlineoption--gst-debug=LIST and related
family members. The list consists of a comma-separated listof category/level pairs, which can set the
debugging level for a specific debugging category. For example,--gst-debug=oggdemux:5 would
turn on debugging for the Ogg demuxer element. You can use wildcards as well. A debugging level of 0
will turn off all debugging, and a level of 5 will turn on all debugging. Intermediate values only turn on
some debugging (based on message severity; 2, for example, will only display errors and warnings).
Here’s a list of all available options:

86

Chapter 21. Things to check when writing an application

• --gst-debug-help will print available debug categories and exit.

• --gst-debug-level=LEVEL will set the default debug level (which can range from 0 (no output) to
5 (everything)).

• --gst-debug=LIST takes a comma-separated list of category_name:level pairsto set specific levels
for the individual categories. Example:GST_AUTOPLUG:5,avidemux:3. Alternatively, you can also
set theGST_DEBUG environment variable, which has the same effect.

• --gst-debug-no-color will disable color debugging (you can also set the
GST_DEBUG_NO_COLOR environment variable to 1 if you want todisable colored debug output
permanently)

• --gst-debug-disable disables debugging altogether.

• --gst-plugin-spew enables printout of errors while loading GStreamer plugins.

21.3. Conversion plugins

GStreamer contains a bunch of conversion plugins that most applications will find useful. Specifically,
those are videoscalers (videoscale), colorspace convertors (ffmpegcolorspace), audio format convertors
and channel resamplers (audioconvert) and audio samplerate convertors (audioresample). Those
convertors don’t do anything when not required, they will act in passthrough mode. They will activate
when the hardware doesn’t support a specific request, though. All applications are recommended to use
those elements.

21.4. Utility applications provided with GStreamer

GStreamer comes with a default set of command-line utilities that can help in application development.
We will discuss onlygst-launchandgst-inspecthere.

21.4.1. gst-launch

gst-launch is a simple script-like commandline application that can beused to test pipelines. For
example, the commandgst-launch audiotestsrc ! audioconvert ! audio/x-raw-int,channels=2 !
alsasinkwill run a pipeline which generates a sine-wave audio streamand plays it to your ALSA audio
card.gst-launchalso allows the use of threads (will be used automatically asrequired or as queue
elements are inserted in the pipeline) and bins (using brackets, so “(” and “)”). You can use dots to imply
padnames on elements, or even omit the padname to automatically select a pad. Using all this, the
pipelinegst-launch filesrc location=file.ogg ! oggdemux name=d d. ! queue ! theoradec !
ffmpegcolorspace ! xvimagesink d. ! queue ! vorbisdec ! audioconvert ! audioresample ! alsasink
will play an Ogg file containing a Theora video-stream and a Vorbis audio-stream. You can also use
autopluggers such as decodebin on the commandline. See the manual page ofgst-launchfor more
information.

87

Chapter 21. Things to check when writing an application

21.4.2. gst-inspect

gst-inspectcan be used to inspect all properties, signals, dynamic parameters and the object hierarchy of
an element. This can be very useful to see whichGObject properties or which signals (and using what
arguments) an element supports. Rungst-inspect fakesrcto get an idea of what it does. See the manual
page ofgst-inspectfor more information.

88

Chapter 22. Porting 0.8 applications to 0.10

This section of the appendix will discuss shortly what changes to applications will be needed to quickly
and conveniently port most applications from GStreamer-0.8 to GStreamer-0.10, with references to the
relevant sections in this Application Development Manual where needed. With this list, it should be
possible to port simple applications to GStreamer-0.10 in less than a day.

22.1. List of changes
• Most functions returning an object or an object property have been changed to return its own reference

rather than a constant reference of the one owned by the object itself. The reason for this change is
primarily thread safety. This means, effectively, that return values of functions such as
gst_element_get_pad (), gst_pad_get_name () and many more like these have to be free’ed
or unreferenced after use. Check the API references of each function to know for sure whether return
values should be free’ed or not. It is important that all objects derived from GstObject are
ref’ed/unref’ed using gst_object_ref() and gst_object_unref() respectively (instead of
g_object_ref/unref).

• Applications should no longer use signal handlers to be notified of errors, end-of-stream and other
similar pipeline events. Instead, they should use theGstBus, which has been discussed inChapter 7.
The bus will take care that the messages will be delivered in the context of a main loop, which is
almost certainly the application’s main thread. The big advantage of this is that applications no longer
need to be thread-aware; they don’t need to useg_idle_add () in the signal handler and do the
actual real work in the idle-callback. GStreamer now does all that internally.

• Related to this,gst_bin_iterate () has been removed. Pipelines will iterate in their own thread,
and applications can simply run aGMainLoop (or call the mainloop of their UI toolkit, such as
gtk_main ()).

• State changes can be delayed (ASYNC). Due to the new fully threaded nature of GStreamer-0.10,
state changes are not always immediate, in particular changes including the transition from READY to
PAUSED state. This means two things in the context of portingapplications: first of all, it is no longer
always possible to dogst_element_set_state () and check for a return value of
GST_STATE_CHANGE_SUCCESS, as the state change might be delayed (ASYNC) and the result
will not be known until later. You should still check for GST_STATE_CHANGE_FAILURE right
away, it is just no longer possible to assume that everythingthat is not SUCCESS means failure.
Secondly, state changes might not be immediate, so your codeneeds to take that into account. You can
wait for a state change to complete if you use GST_CLOCK_TIME_NONE as timeout interval with
gst_element_get_state ().

• In 0.8, events and queries had to manually be sent to sinks in pipelines (unless you were using
playbin). This is no longer the case in 0.10. In 0.10, queriesand events can be sent to toplevel
pipelines, and the pipeline will do the dispatching internally for you. This means less bookkeeping in
your application. For a short code example, seeChapter 11. Related, seeking is now threadsafe, and
your video output will show the new video position’s frame while seeking, providing a better user
experience.

89

Chapter 22. Porting 0.8 applications to 0.10

• TheGstThread object has been removed. Applications can now simply put elements in a pipeline
with optionally some “queue” elements in between for buffering, and GStreamer will take care of
creating threads internally. It is still possible to have parts of a pipeline run in different threads than
others, by using the “queue” element. SeeChapter 16for details.

• Filtered caps -> capsfilter element (the pipeline syntax forgst-launch has not changed though).

• libgstgconf-0.10.la does not exist. Use the “gconfvideosink” and “gconfaudiosink” elements instead,
which will do live-updates and require no library linking.

• The “new-pad” and “state-change” signals onGstElement were renamed to “pad-added” and
“state-changed”.

• gst_init_get_popt_table () has been removed in favour of the new GOption command line
option API that was added to GLib 2.6.gst_init_get_option_group () is the new
GOption-based equivalent togst_init_get_ptop_table ().

90

Chapter 23. Integration

GStreamer tries to integrate closely with operating systems (such as Linux and UNIX-like operating
systems, OS X or Windows) and desktop environments (such as GNOME or KDE). In this chapter, we’ll
mention some specific techniques to integrate your application with your operating system or desktop
environment of choice.

23.1. Linux and UNIX-like operating systems

GStreamer provides a basic set of elements that are useful when integrating with Linux or a UNIX-like
operating system.

• For audio input and output, GStreamer provides input and output elements for several audio
subsystems. Amongst others, GStreamer includes elements for ALSA (alsasrc, alsamixer, alsasink),
OSS (osssrc, ossmixer, osssink) and Sun audio (sunaudiosrc, sunaudiomixer, sunaudiosink).

• For video input, GStreamer contains source elements for Video4linux (v4lsrc, v4lmjpegsrc,
v4lelement and v4lmjpegisnk) and Video4linux2 (v4l2src, v4l2element).

• For video output, GStreamer provides elements for output toX-windows (ximagesink), Xv-windows
(xvimagesink; for hardware-accelerated video), direct-framebuffer (dfbimagesink) and openGL image
contexts (glsink).

23.2. GNOME desktop

GStreamer has been the media backend of the GNOME (http://www.gnome.org/) desktop since
GNOME-2.2 onwards. Nowadays, a whole bunch of GNOME applications make use of GStreamer for
media-processing, including (but not limited to) Rhythmbox (http://www.rhythmbox.org/), Totem
(http://www.hadess.net/totem.php3) and Sound Juicer
(http://www.burtonini.com/blog/computers/sound-juicer).

Most of these GNOME applications make use of some specific techniques to integrate as closely as
possible with the GNOME desktop:

• GNOME applications callgnome_program_init () to parse command-line options and initialize
the necessary gnome modules. GStreamer applications wouldnormally callgst_init () to do the
same for GStreamer. This would mean that only one of the two can parse command-line options. To
work around this issue, GStreamer can provide a GLibGOptionGroup which can be passed to
gnome_program_init (). The following example requires Gnome-2.14 or newer (previous
libgnome versions do not support command line parsing via GOption yet but use the now deprecated
popt)

#include <gnome.h>
#include <gst/gst.h>

91

Chapter 23. Integration

static gchar **cmd_filenames = NULL;

static GOptionEntries cmd_options[] = {
/* here you can add command line options for your application. Check

* the GOption section in the GLib API reference for a more elaborate

* example of how to add your own command line options here */

/* at the end we have a special option that collects all remaining

* command line arguments (like filenames) for us. If you don’

* need this, you can safely remove it */
{ G_OPTION_REMAINING, 0, 0, G_OPTION_ARG_FILENAME_ARRAY, &cmd_filenames,

"Special option that collects any remaining arguments for us" },

/* mark the end of the options array with a NULL option */
{ NULL, }

};

/* this should usually be defined in your config.h */
#define VERSION "0.0.1"

gint
main (gint argc, gchar **argv)
{

GOptionContext *context;
GOptionGroup *gstreamer_group;
GnomeProgram *program;

context = g_option_context_new ("gnome-demo-app");

/* get command line options from GStreamer and add them to the group */
gstreamer_group = gst_init_get_option_group ();
g_option_context_add_group (context, gstreamer_group);

/* add our own options. If you are using gettext for translation of your

* strings, use GETTEXT_PACKAGE here instead of NULL */
g_option_context_add_main_entries (context, cmd_options, NULL);

program = gnome_program_init ("gnome-demo-app", VERSION
LIBGNOMEUI_MODULE, argc, argv,
GNOME_PARAM_HUMAN_READABLE_NAME, "Gnome Demo",
GNOME_PARAM_GOPTION_CONTEXT, context,
NULL);

/* any filenames we got passed on the command line? parse them! */
if (cmd_filenames != NULL) {

guint i, num;

num = g_strv_length (cmd_filenames);
for (i = 0; i < num; ++i) {
/* do something with the filename ... */
g_print ("Adding to play queue: %s\n", cmd_filenames[i]);

}

92

Chapter 23. Integration

g_strfreev (cmd_filenames);
cmd_filenames = NULL;

}

[..]

}

• GNOME stores the default video and audio sources and sinks inGConf. GStreamer provides a number
of elements that create audio and video sources and sinks directly based on those GConf settings.
Those elements are: gconfaudiosink, gconfvideosink, gconfaudiosrc and gconfvideosrc. You can
create them withgst_element_factory_make () and use them directly just like you would use
any other source or sink element. All GNOME applications arerecommended to use those elements.

• GStreamer provides data input/output elements for use withthe GNOME-VFS system. These
elements are called “gnomevfssrc” and “gnomevfssink”.

23.3. KDE desktop

GStreamer has been proposed for inclusion in KDE-4.0. Currently, GStreamer is included as an optional
component, and it’s used by several KDE applications, including AmaroK (http://amarok.kde.org/), JuK
(http://developer.kde.org/~wheeler/juk.html), KMPlayer (http://www.xs4all.nl/~jjvrieze/kmplayer.html)
and Kaffeine (http://kaffeine.sourceforge.net/).

Although not yet as complete as the GNOME integration bits, there are already some KDE integration
specifics available. This list will probably grow as GStreamer starts to be used in KDE-4.0:

• AmaroK contains a kiosrc element, which is a source element that integrates with the KDE VFS
subsystem KIO.

23.4. OS X

GStreamer provides native video and audio output elements for OS X. It builds using the standard
development tools for OS X.

23.5. Windows

GStreamer builds using Microsoft Visual C .NET 2003 and using Cygwin.

93

Chapter 24. Licensing advisory

24.1. How to license the applications you build with
GStreamer

The licensing of GStreamer is no different from a lot of otherlibraries out there like GTK+ or glibc: we
use the LGPL. What complicates things with regards to GStreamer is its plugin-based design and the
heavily patented and proprietary nature of many multimediacodecs. While patents on software are
currently only allowed in a small minority of world countries (the US and Australia being the most
important of those), the problem is that due to the central place the US hold in the world economy and
the computing industry, software patents are hard to ignorewherever you are. Due to this situation, many
companies, including major GNU/Linux distributions, get trapped in a situation where they either get
bad reviews due to lacking out-of-the-box media playback capabilities (and attempts to educate the
reviewers have met with little success so far), or go againsttheir own - and the free software movement’s
- wish to avoid proprietary software. Due to competitive pressure, most choose to add some support.
Doing that through pure free software solutions would have them risk heavy litigation and punishment
from patent owners. So when the decision is made to include support for patented codecs, it leaves them
the choice of either using special proprietary applications, or try to integrate the support for these codecs
through proprietary plugins into the multimedia infrastructure provided by GStreamer. Faced with one of
these two evils the GStreamer community of course prefer thesecond option.

The problem which arises is that most free software and open source applications developed use the GPL
as their license. While this is generally a good thing, it creates a dilemma for people who want to put
together a distribution. The dilemma they face is that if they include proprietary plugins in GStreamer to
support patented formats in a way that is legal for them, theydo risk running afoul of the GPL license of
the applications. We have gotten some conflicting reports from lawyers on whether this is actually a
problem, but the official stance of the FSF is that it is a problem. We view the FSF as an authority on this
matter, so we are inclined to follow their interpretation ofthe GPL license.

So what does this mean for you as an application developer? Well, it means you have to make an active
decision on whether you want your application to be used together with proprietary plugins or not. What
you decide here will also influence the chances of commercialdistributions and Unix vendors shipping
your application. The GStreamer community suggest you license your software using a license that will
allow proprietary plugins to be bundled with GStreamer and your applications, in order to make sure that
as many vendors as possible go with GStreamer instead of lessfree solutions. This in turn we hope and
think will let GStreamer be a vehicle for wider use of free formats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugins tobe used with your application you have a
variety of choices. One of the simplest is using licenses like LGPL, MPL or BSD for your application
instead of the GPL. Or you can add a exceptions clause to your GPL license stating that you except
GStreamer plugins from the obligations of the GPL.

94

Chapter 24. Licensing advisory

A good example of such a GPL exception clause would be, using the Totem video player project as an
example: The authors of the Totem video player project hereby grants permission for
non-GPL-compatible GStreamer plugins to be used and distributed together with GStreamer and Totem.
This permission goes above and beyond the permissions granted by the GPL license Totem is covered by.

Our suggestion among these choices is to use the LGPL license, as it is what resembles the GPL most
and it makes it a good licensing fit with the major GNU/Linux desktop projects like GNOME and KDE.
It also allows you to share code more openly with projects that have compatible licenses. Obviously, pure
GPL code without the above-mentioned clause is not usable inyour application as such. By choosing the
LGPL, there is no need for an exception clause and thus code can be shared more freely.

I have above outlined the practical reasons for why the GStreamer community suggest you allow
non-free plugins to be used with your applications. We feel that in the multimedia arena, the free
software community is still not strong enough to set the agenda and that blocking non-free plugins to be
used in our infrastructure hurts us more than it hurts the patent owners and their ilk.

This view is not shared by everyone. The Free Software Foundation urges you to use an unmodified GPL
for your applications, so as to push back against the temptation to use non-free plug-ins. They say that
since not everyone else has the strength to reject them because they are unethical, they ask your help to
give them a legal reason to do so.

This advisory is part of a bigger advisory with a FAQ which youcan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentation/licensing.html)

95

Chapter 25. Windows support

25.1. Building GStreamer under Win32

There are different makefiles that can be used to build GStreamer with the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program and the free version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctoolkit2003/). You also have to modify your system
environment variables to use it from the command-line. You will also need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically some source files needed to compile GStreamer. That
requires that you have installed on your system some GNU tools and that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :

• GLib

• popt

• libxml2

• libintl

• libiconv

There is now an existing package that has all these dependencies built with MSVC7.1. It exists either as
precompiled librairies and headers in both Release and Debug mode, or as the source package to build it
yourself. You can find it on http://mukoli.free.fr/gstreamer/deps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

• GNU flex (tested with 2.5.4)

• GNU bison (tested with 1.35)

and http://www.mingw.org/

• GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’t want to install GNU tools).

96

Chapter 25. Windows support

25.2. Installation on the system

By default, GSTreamer needs a registry. You have to generateit using "gst-register.exe". It will create the
file in c:\gstreamer\registry.xml that will hold all the plugins you can use.

You should install the GSTreamer core in c:\gstreamer\bin and the plugins in c:\gstreamer\plugins. Both
directories should be added to your system PATH. The librarydependencies should be installed in c:\usr

For example, my current setup is :

• c:\gstreamer\registry.xml

• c:\gstreamer\bin\gst-inspect.exe

• c:\gstreamer\bin\gst-launch.exe

• c:\gstreamer\bin\gst-register.exe

• c:\gstreamer\bin\gstbytestream.dll

• c:\gstreamer\bin\gstelements.dll

• c:\gstreamer\bin\gstoptimalscheduler.dll

• c:\gstreamer\bin\gstspider.dll

• c:\gstreamer\bin\libgtreamer-0.8.dll

• c:\gstreamer\plugins\gst-libs.dll

• c:\gstreamer\plugins\gstmatroska.dll

• c:\usr\bin\iconv.dll

• c:\usr\bin\intl.dll

• c:\usr\bin\libglib-2.0-0.dll

• c:\usr\bin\libgmodule-2.0-0.dll

• c:\usr\bin\libgobject-2.0-0.dll

• c:\usr\bin\libgthread-2.0-0.dll

• c:\usr\bin\libxml2.dll

• c:\usr\bin\popt.dll

97

Chapter 26. Quotes from the Developers

As well as being a cool piece of software, GStreamer is a lively project, with developers from around the
globe very actively contributing. We often hang out on the #gstreamer IRC channel on irc.freenode.net:
the following are a selection of amusing1 quotes from our conversations.

6 Mar 2006

When I opened my eyes I was in a court room. There were masters McIlroy and Thompson sitting
in the jury and master Kernighan too. There were the GStreamer developers standing in the
defendant’s place, accused of violating several laws of Unix philosophy and customer lock-down
via running on a proprietary pipeline, different from that of the Unix systems. I heard Eric Raymond
whispering "got to add this case to my book.

behdad’s blog

12 Sep 2005

<wingo> we just need to get rid of that mmap stuff

<wingo> i think gnomevfssrc is faster for files even

<BBB> wingo, no

<BBB> and no

<wingo> good points ronald

23 Jun 2005

* wingo back

* thomasvsback

--- You are now known as everybody

* everybodyback back

<everybody>now break it down

--- You are now known as thomasvs

98

Chapter 26. Quotes from the Developers

* bilboed back

--- bilboed is now known as john-sebastian

* john-sebastianbach

--- john-sebastian is now known as bilboed

--- You are now known as scratch_my

* scratch_myback

--- bilboed is now known as Illbe

--- You are now known as thomasvs

* Illbe back

--- Illbe is now known as bilboed

20 Apr 2005

thomas: jrb, somehow his screenshotsrc grabs whatever X is showingand makes it available as a
stream of frames

jrb: thomas: so, is the point that the screenshooter takes a video? but won’t the dialog be in the
video? oh, nevermind. I’ll just send mail...

thomas: jrb, well, it would shoot first and ask questions later

2 Nov 2004

zaheerm: wtay: unfair u fixed the bug i was using as a feature!

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensonic: zaheerm, spider is always a good starting point

99

Chapter 26. Quotes from the Developers

14 Jun 2004

teuf: ok, things work much better when I don’t write incredibly stupid and buggy code

thaytan: I find that too

23 Nov 2003

Uraeus: ah yes, the sleeping part, my mind is not multitasking so I was still thinking about exercise

dolphy: Uraeus: your mind is multitasking

dolphy: Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-partyis now known aswingo

* wingoholds head

4 Jun 2001

taaz:you witchdoctors and your voodoo mpeg2 black magic...

omega_:um. I count three, no four different cults there <g>

ajmitch:hehe

omega_:witchdoctors, voodoo, black magic,

omega_:and mpeg

16 Feb 2001

wtay: I shipped a few commerical products to >40000 people now but GStreamer is way more
exciting...

16 Feb 2001

* tool-manis a gstreamer groupie

14 Jan 2001

Omega:did you run ldconfig? maybe it talks to init?

100

Chapter 26. Quotes from the Developers

wtay: not sure, don’t think so... I did run gstreamer-register though :-)

Omega:ah, that did it then ;-)

wtay: right

Omega:probably not, but in case GStreamer starts turning into an OS, someone please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega:?

wtay: me tar"zan", you ...

7 Jan 2001

Omega:that means probably building an agreggating, cache-massaging queue to shove N buffers
across all at once, forcing cache transfer.

wtay: never done that before...

Omega:nope, but it’s easy to do in gstreamer <g>

wtay: sure, I need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down to seconds...

richardb: :)

Omega:I’m wanting to something more interesting soon, I did the "draw an mp3 player in 15sec"
back in October ’99.

101

Chapter 26. Quotes from the Developers

wtay: by the time Omega gets his hands on the editor, you’ll see a complete audio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

Omega:Working on it... ;-)

28 Dec 2000

MPAA:We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA:How dare you laugh at us? We have lawyers! We have Congressmen! We haveLARS!

wtay: I’m so sorry your honor

MPAA:Hrumph.

* wtaybows before thy

Notes
1. No guarantee of sense of humour compatibility is given.

102

	GStreamer Application Development Manual (0.10.4)
	Table of Contents
	List of Figures
	I. Introduction
	Chapter 1. Preface
	1.1. What is GStreamer?
	1.2. Who Should Read This Manual?
	1.3. Preliminary Reading
	1.4. Structure of this Manual

	Chapter 2. Motivation & Goals
	2.1. Current problems
	2.1.1. Multitude of duplicate code
	2.1.2. 'One goal' media players/libraries
	2.1.3. Non unified plugin mechanisms
	2.1.4. Poor user experience
	2.1.5. Provision for network transparency
	2.1.6. Catch up with the Windows world

	2.2. The design goals
	2.2.1. Clean and powerful
	2.2.2. Object oriented
	2.2.3. Extensible
	2.2.4. Allow binary only plugins
	2.2.5. High performance
	2.2.6. Clean core/plugins separation
	2.2.7. Provide a framework for codec experimentation

	Chapter 3. Foundations
	3.1. Elements
	3.2. Bins and pipelines
	3.3. Pads

	II. Building an Application
	Chapter 4. Initializing GStreamer
	4.1. Simple initialization
	4.2. The GOption interface

	Chapter 5. Elements
	5.1. What are elements?
	5.1.1. Source elements
	5.1.2. Filters, convertors, demuxers, muxers and codecs
	5.1.3. Sink elements

	5.2. Creating a GstElement
	5.3. Using an element as a GObject
	5.4. More about element factories
	5.4.1. Getting information about an element using a factory
	5.4.2. Finding out what pads an element can contain

	5.5. Linking elements
	5.6. Element States

	Chapter 6. Bins
	6.1. What are bins
	6.2. Creating a bin
	6.3. Custom bins

	Chapter 7. Bus
	7.1. How to use a bus
	7.2. Message types

	Chapter 8. Pads and capabilities
	8.1. Pads
	8.1.1. Dynamic (or sometimes) pads
	8.1.2. Request pads

	8.2. Capabilities of a pad
	8.2.1. Dissecting capabilities
	8.2.2. Properties and values

	8.3. What capabilities are used for
	8.3.1. Using capabilities for metadata
	8.3.2. Creating capabilities for filtering

	8.4. Ghost pads

	Chapter 9. Buffers and Events
	9.1. Buffers
	9.2. Events

	Chapter 10. Your first application
	10.1. Hello world
	10.2. Compiling and Running helloworld.c
	10.3. Conclusion

	III. Advanced GStreamer concepts
	Chapter 11. Position tracking and seeking
	11.1. Querying: getting the position or length of a stream
	11.2. Events: seeking (and more)

	Chapter 12. Metadata
	12.1. Metadata reading
	12.2. Tag writing

	Chapter 13. Interfaces
	13.1. The URI interface
	13.2. The Mixer interface
	13.3. The Tuner interface
	13.4. The Color Balance interface
	13.5. The Property Probe interface
	13.6. The X Overlay interface

	Chapter 14. Clocks in GStreamer
	14.1. Clock providers
	14.2. Clock slaves

	Chapter 15. Dynamic Controllable Parameters
	15.1. Getting Started
	15.2. Setting up parameter control

	Chapter 16. Threads
	16.1. When would you want to force a thread?
	16.2. Scheduling in GStreamer

	Chapter 17. Autoplugging
	17.1. MIMEtypes as a way to identity streams
	17.2. Media stream type detection
	17.3. Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	18.1. Data probing
	18.2. Manually adding or removing data from/to a pipeline
	18.2.1. Inserting or grabbing data
	18.2.2. Forcing a format
	18.2.3. Example application

	18.3. Embedding static elements in your application

	IV. Higherlevel interfaces for GStreamer applications
	Chapter 19. Components
	19.1. Playbin
	19.2. Decodebin
	19.3. GstEditor

	Chapter 20. XML in GStreamer
	20.1. Turning GstElements into XML
	20.2. Loading a GstElement from an XML file
	20.3. Adding custom XML tags into the core XML data

	V. Appendices
	Chapter 21. Things to check when writing an application
	21.1. Good programming habits
	21.2. Debugging
	21.3. Conversion plugins
	21.4. Utility applications provided with GStreamer
	21.4.1. gstlaunch
	21.4.2. gstinspect

	Chapter 22. Porting 0.8 applications to 0.10
	22.1. List of changes

	Chapter 23. Integration
	23.1. Linux and UNIXlike operating systems
	23.2. GNOME desktop
	23.3. KDE desktop
	23.4. OS X
	23.5. Windows

	Chapter 24. Licensing advisory
	24.1. How to license the applications you build with GStreamer

	Chapter 25. Windows support
	25.1. Building GStreamer under Win32
	25.2. Installation on the system

	Chapter 26. Quotes from the Developers

