
System Design

System Design of SaX2

SuSE advanced X-configuration

Project, Implementation and Maintenance

by Marcus Schaefer (ms@suse.de)
∗

Author: Marcus Schaefer

Datum: December 5, 2005

∗SUSE LINUX Products GmbH, Maxfeldstrasse 5, D-90409 Nuremberg

Contents

1 The SaX2 Principle, based on X11 R6, Version 4.x 5

1.1 Level 1: Init . 6

1.2 Level 2: XC . 6

1.3 xw . 7

1.4 Startup Script . 7

1.5 Diagram of procedures . 11

2 Sysp 13

2.1 Sysp Modules . 13

2.2 Calling up sysp . 14

3 ISaX 15

3.1 ISaX Modules . 15

3.2 Calling up isax . 16

3.3 Creating configurations with isax . 16

4 libsax 17

4.1 Diagram of libsax procedures . 17

4.2 SaX Import Classes . 18

4.3 SaX Manipulation Classes . 19

4.4 SaX Export Classes . 19

4.5 libsax classes and inheritance . 20

5 libsax - Error Handling 21

5.1 Exception handling . 21

5.2 Traditional error functions . 23

6 libsax - Examples 25

6.1 New configuration... 25

6.2 Change current configuration... 26

7 libsax - Thread safety 27

8 libsax - Language bindings 29

8.1 SWIG . 29

8.2 Interface template file for libsax (SaX.i) 30

8.3 Example: libsax used with perl... 32

9 XFine tuning 33

9.1 The XFine cache . 33

9.2 The XFine tune hash . 33

3

Contents

A Examples of Using the SaX2 Batch Mode 35

A.1 Interactive Mode . 38

A.2 Profile Mode and Creating Profile Files 38

B Examples of the Problem of Options 39

C The Variables API File 41

C.1 API File Keyword Explanations . 41

C.2 API File Overview Tables of all Possible Variables 42

C.3 Example of API Variables . 46

Glossary 47

Index 49

4

1 The SaX2 Principle, based on X11 R6,
Version 4.x

Contents

1.1 Level 1: Init . 6

1.2 Level 2: XC . 6

1.3 xw . 7

1.4 Startup Script . 7

1.5 Diagram of procedures . 11

SaX2 is based on a three-layered model which was developed for configuring X11.

Briefly outlined, a registration of hardware is performed in the first layer, in the

second layer the actual configuration takes place, which can either be completely

automated or be done manually, using the information gathered up till now. The

third layer serves to optimize the position and size of the image, after a successful

configuration and start of the X server.

As a result, the first layer will create a cache file which is the so called registry

stored as /var/cache/sax/files/config which is then imported from the second layer

to create the initial configuration suggestion. Up to this point a common format-

ted interface named ISaX serves as proxy between the configuration data and the

program using the data. ISaX is able to provide a common interface between the

cache data gathered up till now and the data contained in an eventually existing

configuration file /etc/X11/xorg.conf. ISaX is also able to receive data, of the same

format as it is abel to provide, to create or modify the actual configuration file. The

program using the data only needs to create such an interface file and request isax

to create the X11 configuration. Using the interface more comfortable can be done

by using the development library called libsax. The registry in combination with the

first and second level processes as well as all the perl Modules for the purposes of

importing and exporting data is named the SaX2 engine

This approach allows the graphical interface to be developed in a completely trans-

parent manner. In this case it also doesn’t matter with what means this was created.

Whether this was done with ncurses, Tk, Qt or whatever it is based on, you must

only ensure that the result of the configuration is either an ISaX interface file match-

ing the corresponding format or use libsax if available in your destination language.

The format of the interface is described in appendix C.

The implementation of SaX2 is based on the languages C++ and Perl. Many small

tools, for adjusting the mouse, for example, or for parsing various formats, were

implemented in C. For reasons of performance, the storage and the re-reading of

the hardware registration was also implemented in C. The principle and procedure

of the configuration, writing the configuration file and the GUI which SaX2 itself

suggests, were implemented in Qt.

5

1 The SaX2 Principle, based on X11 R6, Version 4.x

1.1 Level 1: Init

Init is represented by init.pl and takes on the following tasks:

• Creating the principle file structure and determining default settings.

• Detection of hardware with reference to PCI/PCI-E/AGP graphics cards, pointer

devices, keyboard and monitor. The actual hardware scan is started by a sysp

(System-Profiler) call-up. Sysp is an independent program which is given its

functionality through insertable modules, which in turn can take on a spe-

cific task. In the case of SaX2, only modules were developed for detecting the

above-mentioned components. A description of the individual modules can be

found in chapter 2.

• Entry of data into the hardware registry. By means of functions from the perl

module AutoDetect.pm, the information provided by sysp is integrated into the

file structure. The result from default settings and hardware data corresponds

to the hardware registry.

• Saving the registry. The registration data is then saved in its current form as a

binary stream in /usr/share/sax/files/config.

init.pl is usually not called up manually but via a startup script, described at the end

of this chapter. There, all available options are listed in detail. It is always necessary

to run init.pl whenever hardware has been changed, whether by inserting another

graphics card, or just changing the mouse. In normal cases the hardware registry is

only created once, which considerably speeds up the starting of SaX2.

1.2 Level 2: XC

XC (X-Configuration) is represented by xc.pl and takes over the following tasks:

• Reading the hardware registry. Reading in the registry is done very quickly,

since the data has already been saved in the form of a hash. Data can thus be

read in directly to a perl hash and processed further.

• By means of the functions from CreateSections.pm, a first automatic X11 file is

created from the hardware registry. If no X server is running this configuration

is then used to start the server. In this case the user is prompted with an infor-

mation about a first configuration suggestion. If the user is satisfied with this

configuration he can simply save it and no further configuration tool needs to

be started otherwise the user can start the SaX2 GUI or abort the configura-

tion. If there is a server running already, xc will start the SaX2 GUI directly and

import the actual configuration file. The mode tuning is supported by a perl

module with the name XFineControl.pm. This module is used in SaX2/libsax,

since the actual program xfine which makes changes to the screen, merely pro-

tocols the changes to the modeline in /var/cache/xfine/.... The exact structure

of the files in /var/cache/xfine/ and how xfine functions is described in chapter

9.

6

1.3 xw

• Starting the graphical interface. The interface itself in turn makes use of the

data stored in the hardware registry. Depending on whether an already ex-

isting configuration file should be read in or not, either data is used from the

registry, or information from the configuration file. Encapsulated into the ISaX

interface the following tasks can be done. The reading in of an already exist-

ing configuration file is done by a perl module called ParseConfig.pm. This

module represents an extension of the Perl interpreter and is based on the

libxf86config.a, which is included from version 4.x of X11 R6. The graphical

interface itself only has the task of creating a Variables-API file, from which

an X11 configuration file is newly created, through a later import, using the

ImportAPI.pm module in conjunction with the CreateSections.pm module. An-

other possibility of creating the Variables-API file is using the methods from

libsax. libsax hides all the tasks of creating the Variables-API file and calling

isax within a high level C++ library. More information about libsax can be

found in chapter 4. In case of testing the newly created X11 configuration the

file is used to start a second instance of the X server. On this server the tuning

tool xfine is started, to be able to make possible changes in position and size.

1.3 xw

In the SaX2 running procedure there are a number of points at which one or more X

servers need to be started. Starting a new server is always done by the xw program.

This program was originally a Perl script, later replaced by a C program. The name

xw is derived from xwrapper. The program fulfills the following tasks:

• Starting the X server in its own process. Here the first option is interpreted

as the logfile name, the remaining options are passed on to the X server. The

server is started in a process created by xw through fork(). The output of the X

server in the child process, which is written to the STDERR channel, is diverted

to the logfile by a freeopen() call. xw itself (father) remains in the foreground

and waits.

• Only when the SIGUSR1 signal has been received, which is sent by the X server

to the calling process, is the server ready to work. If the signal arrives, then

the father process is ended, whilst the child process (X server) continues to

function. The process number of the child process is here output to STDOUT.

• Set up background picture and surrounding corner marks

1.4 Startup Script

The coordination of the processes init.pl and xc.pl is controlled by the startup script

sax.sh, which is located in /usr/sbin and is usually called up by the wrapper script

/usr/sbin/SaX2. The wrapper here takes over the following tasks:

• Creating a secure, temporary directory with mktemp.

7

1 The SaX2 Principle, based on X11 R6, Version 4.x

• Testing for root permissions. If a normal user calls up the program, then au-

thentication is required. This is done by the xauth mechanism, via the sux

command, or via the xhost mechanism, if sux does not exist. In both cases the

root password has to be given.

• Calling up the actual SaX2 startup script, /usr/sbin/sax.sh

The ability to pass on options to the startup script is provided by the sum of options

from init.pl and xc.pl. The following options are available:

• -b | --bat
hmode <intera
tive|profile>
With this option the so-called batch mode is activated. In this case SaX2 will

not start immediately, but depending on the parameters, will open an interac-

tive shell or allow the input of data from STDIN. Starting a shell is done via the

optional parameter interactive, with profile SaX2 awaits data from STDIN. The

batch mode allows it to access the configuration procedure directly. Changes

in the batch mode are also stored in the registry. The batch mode requires data

to be in a special format. This format is briefly described if you enter help. It is

very important, however, to understand what changes were made, and where.

Examples of using the interactive shell and the STDIN mode can be found in

Appendix A.

• -a | --auto
With this option the automatic configuration is started. This means that SaX2

works in the background and creates an automatic configuration from the cur-

rent registry data. In this case, no X server or configuration interface is started.

• -l | --lowres
With this option the DDC detection is switched off. This means that possible

information provided by the monitor on its resolution options will not be used.

SaX2 will then start in 800x600 VGA mode.

• -m | --modules
With this option, a server module can be assigned for each graphics chip. An

example should illustrate its use:sax2 -m 0=vga,2=mga
Chip 0 is assigned to the vga module and chip 2 to the mga module. Which

chip number matches which card can be seen with the option -p.

• -
 | --
hip
With this option you can determine which chipsets should be used for config-

uration. For graphics cards with just one graphics processor, this option is the

same as the number of graphics cards to be used:sax2 -
 0,2
Use the cards with the chips 0 and 2. It should be especially noted that the

option -c changes the order of module allocations. If, for example, cards 0 and

2 out of 3 graphics cards are to be used, and here the modules for these cards

are also to be set by options, then this will be given as follows:

8

1.4 Startup Scriptsax2 -
 0,2 -m 0=vga,1=mga
The sequence of module allocation always increases by a step of one.

• -p | --p
i
With this information, SaX2 outputs the result of the PCI/PCI-E/AGP detec-

tion. The output is important in determining which chip number was assigned

to which graphics card.

• -d | --display < Display-Number >
With this option the number of the display to be used can be defined. It should

be noted here that this does not denote the format of an X display, but just a

number. If SaX2 is to be started on display 5, then the command will be as

follows: sax2 -d 5
• -x | --xmode

This option instructs SaX2 not to calculate any modelines. In this case the

modelines installed in the X server will be used to start SaX2.

• -u | --automode
This option instructs the server to search for the best mode itself. This means

that SaX2 does not write any resolution to the start configuration, but leaves

this to the server to choose the mode.

• -n | --node
With this option the device node for the main mouse cursor can be set.

• -t | --type
With this option the protocol to be used for the main mouse cursor is given.

• -g | --gpm
This option activates the gpm as a repeater. Then SaX2 uses MouseSystems as

the mouse protocol and as the device node, the fifo /dev/gpmdata provided by

GPM.

NOTE: Currently this option does not work for X1 R6 v4.0-based X servers.

• -s | --sys
onfig
this option tell SaX2 to import the system wide config file even if SaX2 was

started from a textconsole which normaly will import the SaX2 HW detection

data

• --vesa
This option will set a given resolution and vertical sync value (in Hz) as

VESA standard resolution for a specific card. The format is the following:

Card:XxY@VSync Example: 0:1024x768@85

• --fulls
reen
start in fullscreen mode

9

1 The SaX2 Principle, based on X11 R6, Version 4.x

• -i | --ignoreprofile
This option will disable the use of profiles which are normally applied auto-

matically if defined for a specifc card or chipset

• -r | --reinit
Remove detection database and re-init the hardware database

• -v | --version
print version information and exit.

10

1.5 Diagram of procedures

1.5 Diagram of procedures

sax.sh: main shell script

SaX2 Options

Import Registry
Create initial configuration

xc.pl

(CreateSections.pm)

Call init.pl with its options
init.pl

Build registry (AutoDetect.pm)
Detect hardware by calling sysp

Save (End test server)

In case of test:

Call SaX GUI
xapi

Results in a API file which is
Import data from ISaX interface

create configuration start new server
use xw to start server and tuning tool

information from XFineControl.pm

Re−created at each new saving operation

End ? Yes exit

No

Abort (End test server)

Re−create configuration with change

In case of test:

Save initial configuration
End program

Save initial configuration
End program

Start X server with initial configuration
Display suggestion message

Start SaX GUI Save Abort

Has hardware been changed ?
There is no registry ? Yes

Automatic configuration requested ?
Option −−auto set ?

No

Do I need my own X server ?

Yes

Yes

No

No

libsax enabled workflow

Figure 1.1: SaX2: Diagram of procedures

11

1 The SaX2 Principle, based on X11 R6, Version 4.x

12

2 Sysp

Contents

2.1 Sysp Modules . 13

2.2 Calling up sysp . 14

2.2.1 Sysp Query . 14

2.2.2 Sysp Scan . 14

Sysp stands for system profiler and is an independent program for detecting hard-

ware data based on libhd. Sysp is constructed modularly and saves once detected

data in so-called perl DBM hash files. The data in these files can be read out and

processed again through a sysp call. Detecting and saving information is a central

part of init.pl. This action is carried out once by SaX2 during the initialization. Use

is made of the sysp data, which as a whole makes up the SaX2 registry, at various

points in the configuration process:

• In xc.pl to create the initial configuration.

• In xapi to make data visible in configuration dialogs.

Information which was detected by individual sysp modules is stored in the directory

• /usr/share/sax/sysp/rdbms

and re-read from there as well.

2.1 Sysp Modules

In the course of development for SaX2 the following sysp modules were written:

• Keyboard

This module determines, using the KEYTABLE variable in /etc/sysconfig/keyboard,

which type of protocol can be used under X11. With systems such as Sparc,

for example, a direct hardware scan is started to detect this data.

• Mouse

This module determines the connection and protocol of all pointer devices

connected to the system. A condition of this is that these are PnP-capable

pointer devices, which also provide a checkback signal.

• Server

This module determines all PCI/AGP graphics cards which are inserted in the

PCI or AGP bus. Furthermore, it attempts to set an X11 R6 v4.x module allo-

cation by means of the unique vendor and device ID‘s of these cards, as well

13

2 Sysp

as finding special options and extensions. If a single ISA card isa used, then

it attempts to find out, by registry dump, which X11 R6 v4.x module can be

responsible for this. If there is a mixture of AGP, PCI and ISA cards, the ISA

cards will definitely not be automatically detected.

• Xstuff

This module collects card-specific data, such as video memory, RamDAC speed,

possible resolutions per DDC and the synchronization range of the monitor in

accordance with the resolutions detected. If there is more than one pysical

graphics card a minimal X11 configuration is created from the result of the

preceding sysp module, and the X server is started for a brief test run. The

output of the server is then processed and provides the above-mentioned in-

formation.

2.2 Calling up sysp

Calling up sysp does not have to be regulated in a script, but can also be run by

hand. For this case, two modes should be differentiated:

• Starting a query

• Starting a hardware detection (scan)

2.2.1 Sysp Query

The following command can be used to query data:

sysp -q <ModuleName>

2.2.2 Sysp Scan

The following command can be used to start a hardware scan:

sysp -s <ModuleName> [-o options]

When scanning, it also possible, using the option -o , to pass on options for the

scan. The option list always contains a colon as a separator. An example of such a

command could look like this:

sysp -s server -o all:0=mga,1=ati

14

3 ISaX

Contents

3.1 ISaX Modules . 15

3.2 Calling up isax . 16

3.3 Creating configurations with isax 16

ISaX stands for interfacing sax and is a program to transport information from or to

the engine. It is possible to query information from isax as well as give information

to isax which is then able to create or modify the X11 configuration. If asking isax

for data there are two possible data sources:

• The auto probed values from the sax registry

• The current configuration represented by the file /etc/X11/xorg.conf

3.1 ISaX Modules

The option -b is used to obtain data from the sax registry. If no option is set the

current configuration is used. The engine of SaX is based on seven sections which

can be queried and manipulated:

• Keyboard

defines all information about the core keyboard

• Mouse

defines all information about mice

• Card

defines all information about the graphics hardware

• Desktop

defines all information about the desktop which includes settings like resolu-

tion and colordepth

• Path

defines all information about search paths for fonts and special flags for the

X-Server

• Layout

defines all information about the server layout which includes information

about multihead arrangements as well as priority lists for keyboard and point-

ers

• Extensions

defines all information about new X-Server extensions

15

3 ISaX

3.2 Calling up isax

Calling up isax does not have to be regulated in a script, but can also be run by hand.

The following command can be used to query data about the graphics hardware from

the current configuration:

/usr/sbin/isax -l Card

When obtaining data from the SaX registry the call for graphics hardware will look

like this:

/usr/sbin/isax -l Card -b

3.3 Creating configurations with isax

As mentioned in the first section of this chapter isax can be used to create or modify

X11 configurations as well. To do this it is necessary to specify a so called apidata

file. Detailed information and an example of such a file can be found in appendix

C (The Variables API File). The important point here is to mention that the in-

formation for reading and/or writing data with isax provides a common interface

for all operations which can be done with SaX2. The following command can be

used to create a new configuration from the information specified in the sample file

/var/lib/sax/apidata:

/usr/sbin/isax -f /var/lib/sax/apidata -c /tmp/myconfig

When only modifying based on the currently installed configuration the command

will look like the following. The apidata file in this case contains only information

about the changes which should be migrated with the current configuration data.

/usr/sbin/isax -f /var/lib/sax/apidata -c /tmp/myconfig -m

Both examples will create an output file specified with the option -c. In this case this

results in a file named /tmp/myconfig.

16

4 libsax

Contents

4.1 Diagram of libsax procedures 17

4.2 SaX Import Classes . 18

4.3 SaX Manipulation Classes . 19

4.4 SaX Export Classes . 19

4.5 libsax classes and inheritance 20

Between the SaX2 GUI and the SaX2 engine an interface exists to transport the

information from the GUI into the engine which is then able to create or modify

the X11 configuration. This interface is called ISaX. The ISaX interface is the basis

for the C++ library explained here. The library is divided into the following major

areas:

1. Init:

Provide session cache

2. Import:

Provide classes to obtain all necessary information

3. Manipulate:

Provide classes to manipulate imported data

4. Export:

Provide classes to create or modify the X11-Configuration

The programmer starts with an init() sequence to be able to access the automatically

generated configuration suggestion which is based on the hardware detection. After

this it is possible to import,manipulate and export information. The task of initializ-

ing is done by init.pl explained in chapter 1.1 and shown as black box in the SaX2:

Diagram of procedures.

4.1 Diagram of libsax procedures

The following diagram provides a more detailed description of what init.pl does and

how isax interferes between the autoprobed data and the actual configuration file

/etc/X11/xorg.conf.

17

4 libsax

xorg.confRegistry

CDB PROFILESYSP

SaX Initializing

ISAX

apidata

Application,
GUI,

etc,...

libsax...

Figure 4.1: libsax diagram of procedures

4.2 SaX Import Classes

• ISAX

The data of the currently used X11 configuration or the automatically gen-

erated configuration suggestion can be obtained by using the ISaX interface

respectively by using the isax command. The information is stored into SaX-

Import objects.

• SYSP

Information near to the hardware like PCI IDs, BusID, etc... can be obtained

by using the Sysp interface respectively by using the sysp command. The

information is stored into SaXImportSysp objects

• CDB

Manually maintained data refering stuff like Mice, Tablets, Graphics Cards,

Monitors, etc... can be obtained from the exported files of the CDB (Compo-

nent Data-Base). The information is stored into SaXImportCDB objects

• PROFILE

Profile information for a specific card can be obtained using a special ISaX

interface script called createPRO.pl. The information given here is stored into

a SaXImportProfile object.

18

4.3 SaX Manipulation Classes

4.3 SaX Manipulation Classes

Once the needed data has been imported the programmer can start to manipulate

it. The information from the SYSP, CDB and PROFILE methods are helpful but only

the data concerning the ISAX import are used for the later export respectively the

later configuration file. If the programmer is familiar with the ISaX interface there

would be no need to provide further manipulation classes but to make it comfortable

the library should provide SaXManipulation... classes to be able to do the common

configuration tasks easily. At this point we need to define what the common config-

uration tasks are. Currently the following manipulation classes are specified:

• Baseclass: SaXManipulateCard

Handle hardware related configuration settings including stuff like graphics

drivers options etc...

• Baseclass: SaXManipulateDesktop

Handle desktop related configuration settings including stuff like resolution

colordepth etc...

• Baseclass: SaXManipulateDevices

Handle device creation including stuff like creating or deleting a desktop adding

input devices etc...

• Baseclass: SaXManipulateExtensions

Subclass: SaXManipulateVNC

Handle X-Server extensions for example VNC

• Baseclass: SaXManipulateKeyboard

Handle keyboard configuration settings

• Baseclass: SaXManipulateLayout

Handle layout configuration settings of multihead environments

• Baseclass: SaXManipulatePath

Handle fontpath serverflags and server modules configuration settings

• Baseclass: SaXManipulatePointers

Subclass: SaXManipulateMice,SaXManipulateTablets,SaXManipulateTouchscreens

Handle pointer devices including stuff like mice tablets or touchscreen config-

uration settings

After all manipulations to the SaXImport objects have been done the programmer

needs to add the affected SaXImport objects to a SaXConfig object which handles

the export.

4.4 SaX Export Classes

the library provides a SaXExport and a SaXConfig class whereas the SaXConfig

class is able to include multiple SaXImport objects. The SaXConfig object will create

a corresponding SaXExport object for each SaXImport object bound to the SaXConfig

object. With this list of SaXExport objects it is possible to create a new - or modify

an existing X11 configuration.

19

4 libsax

4.5 libsax classes and inheritance

SaXException

QObject

SaXStorageSaXInit SaXExport

SaXConfig

SaXImportSysp SaXImportSaXImportCDB SaXImportProfile

SaXManipulateDesktop

SaXManipulateDevice

SaXManipulateCard

SaXManipulatePointers

SaXManipulateLayout

SaXManipulatePath

SaXManipulateKeyboard

SaXManipulateExtensions

SaXProcess

SaXManipulateTablets

SaXManipulateMice

SaXManipulateTouchscreens

SaXManipulateVNC

Figure 4.2: libsax: object reference

20

5 libsax - Error Handling

Contents

5.1 Exception handling . 21

5.2 Traditional error functions . 23

There are two possible methods to handle errors from the library:

• Exception handling

asynchronous method using callback functions to handle the errors. The pro-

grammer needs to inherit from SaXException and bind an instance of this class

to an instance of a SaX* class which itself inherits from SaXException as well.

• Traditional error functions

synchronous method calling error methodes after each call to check if the re-

turn code is ok or not.

5.1 Exception handling

Every SaX class which is able to throw exceptions inherits from the SaXException

class and therfore provides an interface to make use of the signal/slot concept pro-

vided by Qt. If an error occurs the library will emit a signal which can be catched.

The following example will illustrate that:

exception.h#in
lude <sax/sax.h>
lass myEx
eption : publi
 SaXEx
eption {Q_OBJECTpubli
:myEx
eption (SaXEx
eption*);private slots:void permissionDenied (void);};
21

5 libsax - Error Handling

exception.cpp#in
lude <sax/sax.h>#in
lude "ex
eption.h"myEx
eption::myEx
eption (SaXEx
eption* mEx
eption) {QObje
t::
onne
t (mEx
eption , SIGNAL (saxPermissionDenied (void)),this , SLOT (permissionDenied (void)));}void myEx
eption::permissionDenied (void) {printf ("_______Permission denied\n");}
main.cpp#in
lude <sax/sax.h>#in
lude "ex
eption.h"int main (void) {SaXEx
eption().setDebug (true);SaXInit* init = new SaXInit;new myEx
eption (init);init->doInit();}
main.proTEMPLATE = appSOURCES += ex
eption.
ppSOURCES += main.
ppHEADERS += ex
eption.hCONFIG += qt warn_on releaseTARGET = testlibunix:LIBS += -lsaxunix:INCLUDEPATH += -I /usr/X11R6/in
lude
build with qmakeexport QMAKESPEC=$QTDIR/mkspe
s/linux-g++export PATH=$PATH:$QTDIR/bin/qmakeqmake -makefile -unix -o Makefile main.promake
22

5.2 Traditional error functions

5.2 Traditional error functions

If using signals is not appropriate for the current language environment the pro-

grammer can call one of the following public error methods:

• code = errorCode()

• info = errorString()

• value = errorValue()

• errorReset()

Every SaX class which can throw an exception will provide these error functions.

The following example show how to make use of the error functions instead of the

exception handling:

main.cpp#in
lude <sax.h>int main (void) {SaXInit* init = new SaXInit;...printf ("%d : %s\n",init->errorCode(),init->errorString().as
ii());}

23

5 libsax - Error Handling

24

6 libsax - Examples

6.1 New configuration...

The following example will create a new configuration based on the suggestion made

by SaX. We will add a new resolution 1600x1200 and want a modeline for the mode

to be created.#in
lude <sax.h>int main (void) {SaXInit init;if (init.needInit()) {init.doInit();}SaXEx
eption().setDebug (true);QDi
t<SaXImport> se
tion;int importID[7℄ = {SAX_CARD, SAX_DESKTOP, SAX_POINTERS,SAX_KEYBOARD, SAX_LAYOUT, SAX_PATH, SAX_EXTENSIONS};SaXConfig*
onfig = new SaXConfig;for (int id=0; id<7; id++) {SaXImport* import = new SaXImport (importID[id℄);import -> setSour
e (SAX_AUTO_PROBE);import -> doImport();
onfig -> addImport (import);se
tion.insert (import->getSe
tionName(),import);}SaXManipulateDesktop mDesktop (se
tion["Desktop"℄,se
tion["Card"℄,se
tion["Path"℄);if (mDesktop.sele
tDesktop (0)) {mDesktop.addResolution (24,1600,1200);mDesktop.
al
ulateModelines (true);}
onfig -> setMode (SAX_NEW);
onfig ->
reateConfiguration();}
25

6 libsax - Examples

6.2 Change current configuration...

The next example will change the current configuration to use 24 bit as default color

depth.#in
lude <sax.h>int main (void) {SaXEx
eption().setDebug (true);QDi
t<SaXImport> se
tion;int importID[3℄ = {SAX_CARD,SAX_DESKTOP,SAX_PATH,};SaXConfig*
onfig = new SaXConfig;for (int id=0; id<3; id++) {SaXImport* import = new SaXImport (importID[id℄);import -> setSour
e (SAX_SYSTEM_CONFIG);import -> doImport();
onfig -> addImport (import);se
tion.insert (import->getSe
tionName(),import);}SaXManipulateDesktop mDesktop (se
tion["Desktop"℄,se
tion["Card"℄,se
tion["Path"℄);if (mDesktop.sele
tDesktop (0)) {mDesktop.setColorDepth (24);}
onfig -> setMode (SAX_MERGE);
onfig ->
reateConfiguration();}

26

7 libsax - Thread safety

To be thread safe there are a view code points which needs a locking. The following

list describes the serialized lock parts of the library:

• library included debug messages to STDERR are embedded into flockfile() /

funlockfile() calls

• library initializing calls will lock each other using flock()

• library exporting code which creates the apidata files will apply an flock()

during file creation

Refering to this the library can be used in a simultaneously way without crashing

and without leaving the configuration in an inconsistent state. Of course it does not

make much sense to simultaneously configure two different issues in such a case

the last one will win. The following example will demonstrate a thread example

including a simultaneously initialization.#in
lude <pthread.h>#in
lude <sax.h>void* myFun
tion (void*);int main (void) {pthread_t outThreadID1,outThreadID2;pthread_
reate (&outThreadID1, 0, myFun
tion, 0);pthread_
reate (&outThreadID2, 0, myFun
tion, 0);pthread_join (outThreadID1,NULL);pthread_join (outThreadID2,NULL);return 0;}void* myFun
tion (void*) {printf ("Che
king
a
he...\n");SaXInit* init = new SaXInit;if (init->needInit()) {printf ("Initialize
a
he...\n");init->doInit();}printf ("%d : %s\n",init->errorCode(),init->errorString().as
ii());pthread_exit (0);}
27

7 libsax - Thread safety

28

8 libsax - Language bindings

Contents

8.1 SWIG . 29

8.2 Interface template file for libsax (SaX.i) 30

8.2.1 Interface explanations . 32

8.3 Example: libsax used with perl... 32

libsax has been developed as a C++ written library which means including this

library into languages providing an object model is a possible task whereas bindings

to non object oriented languages requires a self written wrapper for accessing object

methods.

8.1 SWIG

SWIG (Simple Wrapper Interface Generator) is a software development tool that

simplifies the task of interfacing different languages to C and C++ programs. In

a nutshell, SWIG is a compiler that takes C declarations and creates the wrappers

needed to access those declarations from other languages including csharp, java,

perl5, php4, python or tcl. Creating language bindings for libsax requires the fol-

lowing tasks:

• All libsax C++ header files must be available to create the binding

• C++ operator support is not available in many scripting languages. Because

of this reason the binding should disable operator support and the library has

to provide methods as well as operators.

• Typemaps for transforming the Qt types used within the library must be pro-

vided for each destination language.

• Qts Signal/Slot concept is not supported by the destination languages. libsax

is using this mechanism to implement exception handling. As consequence

only the traditional error handling is available for the bindings and the SaXEx-

ception class needs to be wrapped within the bindings interface definition.

29

8 libsax - Language bindings

8.2 Interface template file for libsax (SaX.i)

The following template illustrate the steps which needs to be implemented to be

able to map all libsax types into the destination language.//==================================// Interfa
e definition for libsax//----------------------------------#define NO_OPERATOR_SUPPORT 1%module SaX%{#in
lude "../sax.h"%}//==================================// SWIG in
ludes//----------------------------------%in
lude ex
eption.i//==================================// Typemaps//----------------------------------//==================================// Allow QString return types//----------------------------------// [destination language dependant ℄// ...//==================================// Allow QString refs as parameters//----------------------------------// [destination language dependant ℄// ...//==================================// Allow QDi
t<QString> return types//----------------------------------// [destination language dependant ℄// ...//==================================// Allow QList<QString> return types//----------------------------------// [destination language dependant ℄// ...

30

8.2 Interface template file for libsax (SaX.i)//==================================// Ex
eption
lass wrapper...//----------------------------------
lass SaXEx
eption {publi
:int errorCode (void);bool havePrivileges (void);void errorReset (void);publi
:QString errorString (void);QString errorValue (void);publi
:void setDebug (bool = true);};//==================================// ANSI C/C++ de
larations...//----------------------------------%in
lude "../storage.h"%in
lude "../pro
ess.h"%in
lude "../export.h"%in
lude "../import.h"%in
lude "../init.h"%in
lude "../
onfig.h"%in
lude "../
ard.h"%in
lude "../keyboard.h"%in
lude "../pointers.h"%in
lude "../desktop.h"%in
lude "../extensions.h"%in
lude "../layout.h"%in
lude "../path.h"%in
lude "../sax.h"

31

8 libsax - Language bindings

8.2.1 Interface explanations

The interface file is divided into four sections which handles the following interfacing

problems:

1. Module name and include files to be able to create the wrapper code. The

namespace used here is called SaX

2. type mappings from C++ into the destination language. Currently perl,python,java

and csharp types are supported.

3. Exception class wrapper which doesn’t include the Qt signal/slot definitions

4. Declarations used to create an interface for the destination language. Refering

to perl this information is used to create the appropriate SaX.pm file

8.3 Example: libsax used with perl...

The following examples will do the same as the last example from the Examples

chapter; Changing the default colordepth of the current configuration to 24 bit.use SaX;sub main {my %se
tion;my �importID = ($SaX::SAX_CARD, $SaX::SAX_DESKTOP, $SaX::SAX_PATH);my $
onfig = new SaX::SaXConfig;forea
h my $id (�importID) {$import = new SaX::SaXImport ($id);$import -> setSour
e ($SaX::SAX_SYSTEM_CONFIG);$import -> doImport();$
onfig -> addImport ($import);$se
tion{$import->getSe
tionName()} = $import;}my $mDesktop = new SaX::SaXManipulateDesktop ($se
tion{Desktop},$se
tion{Card},$se
tion{Path});if ($mDesktop->sele
tDesktop (0)) {$mDesktop->setColorDepth (24);}$
onfig -> setMode (SaX::SAX_MERGE);$
onfig ->
reateConfiguration();}main();
32

9 XFine tuning

Contents

9.1 The XFine cache . 33

9.2 The XFine tune hash . 33

9.2.1 The ImportXFineCache flag 34

XFine in SaX2 represents both a module and an independent X11 application. The

module XFineControl.pm is used within SaX2 to save changes in the image geome-

try and to write these to the configuration file.

9.1 The XFine cache

The xfine application writes this change information to the image geometry as a file

in the directory:

• /var/cache/xfine

Per resolution a file is created with change information. The files are named ac-

cording to the SCREEN:XxY convention. The format of the files has the following

convention:SCREEN:OLDMODE:NEWMODE:DACSPEED
When using xfine as a standalone application no changes are made to the actual

configuration file, only if used within SaX2 the data written to /var/cache/xfine is

processed.

9.2 The XFine tune hash

When SaX2 is using the cache data written by xfine the main task in using XFineCon-

trol.pm is in the creation of the so-called tune hash. This hash serves in SaX2 as a

reference for already changed modelines and is checked with each test run. It con-

tains the original modeline, the last changed modeline and the current modeline. By

means of the timing values and the number of original modelines, a check is made

on whether the tune hash needs to be newly created, or if it can serve as a reference.

33

9 XFine tuning

9.2.1 The ImportXFineCache flag

To activate processing the cache data and creating the tune hash the following flag

has to be set in the Desktop section of the ISaX interface file:Desktop {0 ImportXFineCa
he = yes...}
If using libsax the xfine cache is automatically included after a successful test of the

X server. When testing the script /var/lib/sax/createTST.pl is called which will start

the server and the tuning tool.

34

A Examples of Using the SaX2 Batch
Mode

Contents

A.1 Interactive Mode . 38

A.2 Profile Mode and Creating Profile Files 38

The batch mode in SaX2 allows you to make special settings directly after the hard-

ware scan. This mode can be switched on in the init.pl stage. There are two different

modes:

• Interactive mode

A shell is provided to enter commands.

• Profile mode

STDIN is read in and you can specify a profile file which contains shell com-

mands.

Changes at this point directly influence the contents of the %var hash which is used

to construct the registry and create the initial configuration. It is absolutely essential

to understand the hash structure if you want to use this mode sensibly.

This structure is not a static form. It can be extended at will with the batch mode,

but it is not clear that all data of the hash can also be used in the configuration, since

simply everything in the hash can be included. The automatically created structure,

when SaX2 is started, is built up as follows:#--## Files spe
ifi
ation... ##--#Files -> 0 -> FontPathFiles -> 0 -> RgbPathFiles -> 0 -> ModulePathFiles -> 0 -> LogFile#---## Module spe
ifi
ation... ##---#Module -> 0 -> Load#---## ServerFlags spe
ifi
ation... ##---#
35

A Examples of Using the SaX2 Batch ModeServerFlags -> 0 -> OptionServerFlags -> 0 -> blank timeServerFlags -> 0 -> standby timeServerFlags -> 0 -> suspend timeServerFlags -> 0 -> off time#---## Keyboard spe
ifi
ation... ##---#InputDevi
e -> 0 -> IdentifierInputDevi
e -> 0 -> DriverInputDevi
e -> 0 -> Option -> Proto
olInputDevi
e -> 0 -> Option -> XkbRulesInputDevi
e -> 0 -> Option -> XkbModelInputDevi
e -> 0 -> Option -> XkbLayoutInputDevi
e -> 0 -> Option -> XkbVariantInputDevi
e -> 0 -> Option -> AutoRepeatInputDevi
e -> 0 -> Option -> XledsInputDevi
e -> 0 -> Option -> XkbOptions#---## Mouse spe
ifi
ation... ##---#InputDevi
e -> 1 -> IdentifierInputDevi
e -> 1 -> DriverInputDevi
e -> 1 -> Option -> Proto
olInputDevi
e -> 1 -> Option -> Devi
eInputDevi
e -> 1 -> Option -> SampleRateInputDevi
e -> 1 -> Option -> BaudRateInputDevi
e -> 1 -> Option -> Emulate3ButtonsInputDevi
e -> 1 -> Option -> Emulate3TimeoutInputDevi
e -> 1 -> Option -> ChordMiddleInputDevi
e -> 1 -> Option -> ButtonsInputDevi
e -> 1 -> Option -> ResolutionInputDevi
e -> 1 -> Option -> ClearDTRInputDevi
e -> 1 -> Option -> ClearRTSInputDevi
e -> 1 -> Option -> ZAxisMappingInputDevi
e -> 1 -> Option -> MinXInputDevi
e -> 1 -> Option -> MaxXInputDevi
e -> 1 -> Option -> MinYInputDevi
e -> 1 -> Option -> MaxYInputDevi
e -> 1 -> Option -> S
reenNumberInputDevi
e -> 1 -> Option -> ReportingModeInputDevi
e -> 1 -> Option -> ButtonThresholdInputDevi
e -> 1 -> Option -> ButtonNumberInputDevi
e -> 1 -> Option -> SendCoreEvents#---## Monitor spe
ifi
ation... #
36

#---#Monitor -> 0 -> IdentifierMonitor -> 0 -> VendorNameMonitor -> 0 -> ModelNameMonitor -> 0 -> HorizSyn
Monitor -> 0 -> VertRefreshMonitor -> 0 -> Modeline -> 0 -> 640x480Monitor -> 0 -> Option#---## Devi
e spe
ifi
ation... ##---#Devi
e -> 0 -> IdentifierDevi
e -> 0 -> VendorNameDevi
e -> 0 -> BoardNameDevi
e -> 0 -> VideoramDevi
e -> 0 -> DriverDevi
e -> 0 -> ChipsetDevi
e -> 0 -> Clo
ksDevi
e -> 0 -> BusIDDevi
e -> 0 -> OptionDevi
e -> 0 -> Spe
ial -> hw_
ursor#---## S
reen spe
ifi
ation... ##---#S
reen -> 0 -> IdentifierS
reen -> 0 -> Devi
eS
reen -> 0 -> MonitorS
reen -> 0 -> DefaultDepthS
reen -> 0 -> Depth -> 8 -> ModesS
reen -> 0 -> Depth -> 8 -> ViewPortS
reen -> 0 -> Depth -> 8 -> VirtualS
reen -> 0 -> Depth -> 8 -> VisualS
reen -> 0 -> Depth -> 8 -> WeightS
reen -> 0 -> Depth -> 8 -> Bla
kS
reen -> 0 -> Depth -> 8 -> WhiteS
reen -> 0 -> Depth -> 8 -> Option#---## ServerLayout spe
ifi
ation... ##---#ServerLayout -> all -> IdentifierServerLayout -> all -> InputDevi
e -> 0 -> idServerLayout -> all -> InputDevi
e -> 0 -> usageServerLayout -> all -> InputDevi
e -> 1 -> idServerLayout -> all -> InputDevi
e -> 1 -> usageServerLayout -> all -> S
reen -> 0 -> idServerLayout -> all -> S
reen -> 0 -> top
37

A Examples of Using the SaX2 Batch ModeServerLayout -> all -> S
reen -> 0 -> bottomServerLayout -> all -> S
reen -> 0 -> leftServerLayout -> all -> S
reen -> 0 -> right
A.1 Interactive Mode

The interactive mode provides the user with the following commands:

• list

The list command lists all settings of the current registry.

• see

The see command allows a certain setting to be displayed. For example, to see

the modules used: see Module->0->Load.

• calc

The calc command lets you calculate modeline timings. For example:
al
 1024x768->70 calculates a modeline for the mode 1024x768 at 70 Herz.

• abort

Ends interactive mode and discards all changes.

• exit

Ends interactive mode and saves all changes.

• Setting variables

Setting variables is done by setting the full variable path, by including a value

allocation. For example:Module->0->Load = glx,dri.

A.2 Profile Mode and Creating Profile Files

In some very specific cases it may be necessary for a profile for a card to be created.

SaX2 provides a mechanism which allows you to include known profiles in the SaX2

package. These profile files are located under:

• /usr/share/sax/profile/

If there is an entry in /usr/share/sax/sysp/modules/maps/Identity.map which starts

with PROFILE=... then the profile for this card is integrated. The profile files essen-

tially consist of variable values, as the following example illustrates:S
reen ->[X℄->DefaultDepth = 24Monitor->[X℄->Modeline->0->640x480 = 36.00 640 680 760 768 480 490 497 520Monitor->[X℄->Modeline->1->800x600 = 49.50 800 856 992 1000 600 612 619 651
Since it is never known in advance for which monitor, screen or device the new

setting is to be made, it is possible to set a place holder in the form of an [X] mark,

otherwise a number must be entered at this point.

38

B Examples of the Problem of Options

1. Four cards are inserted, of which the last 3 should be used. For cards 2 and 4,

modules should be set. In this case the command would be:sax2 -
 1,2,3 -m 0=mga,2=nv
The numbering of the chips begins with 0, as does the order of modules. The

device 0 is connected to chip 1, device 1 to chip 2, device 2 to chip 3.

2. Two cards with a total of 4 chipsets are inserted. Three of the 4 chips are on

the first card, the other one on the 2nd card. A multihead setup should be

created which in each case uses the first chip on both cards:sax2 -
 0 3
If modules need to be allocated for these chipsets, then it should be noted that

these are detected as card 0 and card 1 and consequently the module option

needs to be set to 0 and 1:sax2 -
 0,3 -m 0=mga,1=glint

39

B Examples of the Problem of Options

40

C The Variables API File

Contents

C.1 API File Keyword Explanations 41

C.2 API File Overview Tables of all Possible Variables 42

C.2.1 Path Variables: Section Files, Modules and Server Flags . . . 42

C.2.2 Card Variables: Device Section 43

C.2.3 Mouse Variables: InputDevice Section 43

C.2.4 Desktop Variables: Section Monitor,Modes and Screen . . . 44

C.2.5 Layout Variables: Section ServerLayout 44

C.2.6 Keyboard Variables: InputDevice Section 45

C.3 Example of API Variables . 46

In this chapter all variables which may be found in a variables API file are explained.

The variables API is normally created by SaX2’s own configuration interface, but

this is not absolutely necessary. As soon as a variables API exists, this can be used

to create a configuration file. In conjunction with the ImportAPI module and the

CreateSections module, an X11 configuration can be created from the API file.

C.1 API File Keyword Explanations

The individual tables in their format description use various keywords, which are

explained in the following list.

• String:

Refers to any sequence of characters which are not embedded in quotation

marks.

• Subsection:

Refers to the name of a subsection in the X11 configuration. This word is

followed by an entry in the subsection.

• Flagname:

Refers to the name of a server flag. This is followed by the value for the server

flag.

• Integer:

Refers to a whole number. Is usually used in connection with variables for

defining size.

• ButtonX:

Refers to the number of the mouse button which should be adapted for the

wheel movement in the X axis.

41

C The Variables API File

• ButtonY:

Refers to the number of the mouse button which should be adapted for the

wheel movement in the Y axis.

• Clocks:

Refers to a list separated by spaces. with clock values. These values can be

whole numbers as well as fractions.

• Mode:

Refers to a resolution string in the form of [Xpixel℄x[Ypixel℄
• Algorithm:

Refers to the two possible algorithms CheckDesktopGeometry or IteratePrecisely.

• Modeline:

Refers to a modeline string, starting with a name in quotation marks which

must match a resolution string, followed by the RamDAC speed and 8 further

parameters.

• Sync:

Refers to a frequency range. This is specified through a number range in the

format: [Minimum℄-[Maximum℄
• Left,Right,Up,Down

Refers to a screen position. The value matches an identifier string in accor-

dance with the monitor. If there is no screen at this point then <none> should

be entered.

C.2 API File Overview Tables of all Possible Variables

Below, all variables which may appear in an API file are listed in tabular form. The

contents of each table refer to a section in the API file. It should be noted that one

API section may cover a number of xorg.conf sections.

C.2.1 Path Variables: Section Files, Modules and Server Flags

Identifier Variable Format

Integer FontPath String,String,String,...

Integer RgbPath String,String,String,...

Integer ModulePath String,String,String,...

Integer ModuleLoad String,String,String,...

Integer Extmod Subsection,String\nSubsectio,String,...

Integer SpecialFlags Flagname,String\nFlagname,String,...

Integer ServerFlags String,String,String,...

42

C.2 API File Overview Tables of all Possible Variables

C.2.2 Card Variables: Device Section

Identifier Variable Format

Integer Identifier String

Integer Driver String

Integer Memory Integer

Integer BusID String

Integer Vendor String

Integer Name String

Integer DacChip String

Integer GraphicsChip String

Integer ClockChip String

Integer DacSpeed String

Integer Clocks Clocks,Clocks,...

Integer Option String,String,...

Integer RawData String,String,...

Integer MaxDac Integer

C.2.3 Mouse Variables: InputDevice Section

Identifier Variable Format

Integer Identifier String

Integer Driver String

Integer Protocol String

Integer Device String

Integer Baudrate Integer

Integer Samplerate Integer

Integer Emulate3Buttons Yes | No

Integer Emulate3Timeout Integer

Integer ChordMiddle Yes | No

Integer MinX Integer

Integer MaxX Integer

Integer MinY Integer

Integer MaxY Integer

Integer ScreenNumber Integer

Integer ReportingMode String

Integer ButtonNumber Integer

Integer ButtonThreshold Integer

Integer SendCoreEvents Yes | No

Integer ClearDTR Yes | No

Integer ClearRTS Yes | No

Integer ZAxisMapping Off | None | ButtonX ButtonY | X | Y

Integer ZAxisNegMove Off | ButtonX

Integer ZAxisPosMove Off | ButtonY

Integer Vendor String

Integer Name String

Integer TabletMode String

Integer TabletType String

43

C The Variables API File

C.2.4 Desktop Variables: Section Monitor,Modes and Screen

Identifier Variable Format

Integer Identifier String

Integer Device String

Integer Monitor String

Integer VendorName String

Integer ModelName String

Integer Virtual Integer Integer

Integer Visual String

Integer HorizSync Sync

Integer VertRefresh Sync

Integer MonitorOptions String,String,...

Integer ScreenOptions String,String,...

Integer Modelines Modeline,Modeline,...

Integer SpecialModeline Modeline,Modeline,...

Integer ColorDepth Integer

Integer CalcModelines Yes | No

Integer CalcAlgorithm Algorithm

Integer ViewPort Integer Integer

Integer ScreenRawLine String,String,...

Integer Modes:4 Mode,Mode,...

Integer Modes:8 Mode,Mode,...

Integer Modes:15 Mode,Mode,...

Integer Modes:16 Mode,Mode,...

Integer Modes:24 Mode,Mode,...

Integer Modes:32 Mode,Mode,...

Integer ImportXFineCache Yes | No

C.2.5 Layout Variables: Section ServerLayout

Identifier Variable Format

Integer Identifier String

Integer Keyboard String

Integer InputDevice String,String,..

Integer Xinerama On | Off

Integer Screen:<Identifier> Left Right Up Down

44

C.2 API File Overview Tables of all Possible Variables

C.2.6 Keyboard Variables: InputDevice Section

Identifier Variable Format

Integer Identifier String

Integer Driver String

Integer Protocol String

Integer XkbRules String

Integer XkbModel String

Integer XkbLayout String

Integer XkbVariant String

Integer XkbOptions String,String,...

Integer AutoRepeat String

Integer Xleds String

Integer XkbDisable Yes | None

Integer VTSysReq Yes | None

Integer VTInit String

Integer ServerNumLock Yes | None

Integer LeftAlt String

Integer RightAlt String

Integer ScrollLock String

Integer RightCtl String

Integer XkbKeyCodes String

45

C The Variables API File

C.3 Example of API VariablesKeyboard {0 Proto
ol = Standard0 XkbLayout = de0 Identifier = Keyboard[0℄0 XkbModel = p
1050 XkbVariant = nodeadkeys0 Driver = kbd}Mouse {1 ZAxisMapping = 4 51 Driver = mouse1 Devi
e = /dev/input/mi
e1 ButtonNumber = 51 Vendor = Sysp1 Identifier = Mouse[1℄1 Name = Autodete
tion1 Proto
ol = imps/2}Card {0 Name = RivaTNT0 Identifier = Devi
e[0℄0 BusID = 1:0:00 Driver = nv0 Vendor = Nvidia}Desktop {0 VertRefresh = 50-1600 Devi
e = Devi
e[0℄0 ModelName = Vision Master Pro 450 (A901HT)0 Cal
Modelines = yes0 Identifier = S
reen[0℄0 ColorDepth = 160 Monitor = Monitor[0℄0 Modes:16 = 1800x1350,640x4800 HorizSyn
 = 27-1150 VendorName = Iiyama}Path {0 RgbPath = /usr/X11R6/lib/X11/rgb0 ModulePath = /usr/X11R6/lib/modules0 ServerFlags = AllowMouseOpenFail0 FontPath = /usr/X11R6/lib/X11/fonts/mis
:uns
aled0 ModuleLoad = dbe,type1,speedo,extmod,freetype}Layout {0 S
reen:S
reen[0℄ = <none> <none> <none> <none>0 InputDevi
e = Mouse[1℄0 Keyboard = Keyboard[0℄0 Identifier = Layout[all℄}Extensions {}
46

Glossary

SaX2
Is an abbreviation for SuSE advanced
X-configuration SaX2 is available for X11

R6 from version 3.3.3 onwards.

Device File
The interface between the functions of

a driver and the access to these
functions is formed by a device file. By

means of the major and minor number
of this file (also called node), alloca-

tion is made to a specific driver.

Device Node
Another term for device file.

/etc/sysconfig/...
Contains configuration and start options

for all services of the installed system.

batchmode
The batch mode stands for the concept
of batch processing, and symbolizes a

series of actions which are processed
in the form of a stack. In SaX2 the

batch mode is a kind of command in-

terface into which you can enter com-
mands or define variables for later use.

The batch mode in SaX2 can be con-

trolled automatically, or via a file.

47

Glossary

48

Index

A
API file examples . 46

appendix

API file . 41
batch-mode examples 35

start examples 39

D
diagram of procedures 11

I
init.pl . 6
ISaX . 15

call up . 16

L
libsax . 17

O
options . 7

S
Section

Device . 42

files . 42
InputDevice . 43

Modes . 43

module . 42
Monitor . 43

Screen . 43

serverflags . 42
ServerLayout 44

Sysp . 13
call up . 14

Module . 13

X
xc.pl . 6

xw . 7

49

	1 The SaX2 Principle, based on X11 R6, Version 4.x
	1.1 Level 1: Init
	1.2 Level 2: XC
	1.3 xw
	1.4 Startup Script
	1.5 Diagram of procedures

	2 Sysp
	2.1 Sysp Modules
	2.2 Calling up sysp

	3 ISaX
	3.1 ISaX Modules
	3.2 Calling up isax
	3.3 Creating configurations with isax

	4 libsax
	4.1 Diagram of libsax procedures
	4.2 SaX Import Classes
	4.3 SaX Manipulation Classes
	4.4 SaX Export Classes
	4.5 libsax classes and inheritance

	5 libsax - Error Handling
	5.1 Exception handling
	5.2 Traditional error functions

	6 libsax - Examples
	6.1 New configuration...
	6.2 Change current configuration...

	7 libsax - Thread safety
	8 libsax - Language bindings
	8.1 SWIG
	8.2 Interface template file for libsax (SaX.i)
	8.3 Example: libsax used with perl...

	9 XFine tuning
	9.1 The XFine cache
	9.2 The XFine tune hash

	A Examples of Using the SaX2 Batch Mode
	A.1 Interactive Mode
	A.2 Profile Mode and Creating Profile Files

	B Examples of the Problem of Options
	C The Variables API File
	C.1 API File Keyword Explanations
	C.2 API File Overview Tables of all Possible Variables
	C.3 Example of API Variables

	Glossary
	Index

